Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 191(11): 690, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31664599

RESUMO

Sequestration of atmospheric carbon-dioxide in biospheric carbon (C) pools is a key strategy towards climate change mitigation. Soil is a huge C reservoir and its storage potential varies greatly with forest types. Therefore, in the present study, the soil organic carbon (SOC) storage pattern was assessed from 70 plots laid at three selected forest types comprising seven study sites at Kanyakumari Wildlife Sanctuary, Western Ghats, India: tropical dry deciduous (TDD I and TDD II), tropical semi-evergreen (TSE I and TSE II) and tropical evergreen forest (TEF I, TEF II and TEF III) at three depths (0-10, 10.1-20 and 20.1-30 cm). Statistical analyses were performed to understand the relationships between SOC stocks with other predictor variables. The SOC stock varied markedly with forest type and site-wise. The SOC ranged from 58 (TEF III) to 123.6 (TDD I) Mg C/ha with a mean of 84.9 ± 4.4 Mg C/ha at 0-30 cm depth. SOC stock decreased, while soil bulk density increased with increase in soil depth. The TDD forest type (115.6 Mg C/ha) stocked the highest SOC compared to TEF (75.1 Mg C/ha) and TSE (68.9 Mg C/ha) forest types. Of the total SOC stock (0-30 cm), 44.2, 32.0 and 23.8% were stored in 0-10, 10.1-20 and 20.1-30 cm respectively in all the forest types. In contrast, litter C stock were high in TEF and TSE forest types and low in TDD forest type. SOC showed significant (P < 0.01) negative relationships with bulk density, litter C, and vegetation attributes. The SOC stock stored in the study sites amount to 212.9 (TEF III) to 453.6 (TDD I) Mg of CO2 equivalents. The present study reveals that forest type and site characteristics have a profound impact on SOC stock, which would, in turn, exert a great bearing on the ecosystem C cycling. These results would also enhance our ability to evaluate the role of these forest types in soil C sequestration and for developing and validating SOC models for tropical forest ecosystems.


Assuntos
Sequestro de Carbono , Monitoramento Ambiental , Florestas , Carbono/análise , Ciclo do Carbono , Mudança Climática , Ecossistema , Índia , Solo/química
2.
Environ Monit Assess ; 189(4): 187, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28353204

RESUMO

Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among them in terms of biomass and carbon stocks which could be attributed to variation in anthropogenic pressures among the plots as well as to changes in tree density across landscapes. Total basal area of woody vegetation showed a significant positive (R 2 = 0.978; P = 0.000) relationship with carbon storage while juvenile tree basal area showed the negative relationship (R 2 = 0.4804; P = 0.000) with woody carbon storage. The present study generates a large-scale baseline data of dry deciduous forest carbon stock, which would facilitate carbon stock assessment at a national level as well as to understand its contribution on a global scale.


Assuntos
Carbono/análise , Florestas , Biomassa , Índia , Árvores , Clima Tropical , Madeira
3.
Environ Monit Assess ; 187(2): 55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25638061

RESUMO

An accurate characterization of tree, understory, deadwood, floor litter, and soil organic carbon (SOC) pools in temperate forest ecosystems is important to estimate their contribution to global carbon (C) stocks. However, this information on temperate forests of the Himalayas is lacking and fragmented. In this study, we measured C stocks of tree (aboveground and belowground biomass), understory (shrubs and herbaceous), deadwood (standing and fallen trees and stumps), floor litter, and soil from 111 plots of 50 m × 50 m each, in seven forest types: Populus deltoides (PD), Juglans regia (JR), Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), Abies pindrow (AP), and Betula utilis (BU) in temperate forests of Kashmir Himalaya, India. The main objective of the present study is to quantify the ecosystem C pool in these seven forest types. The results showed that the tree biomass ranged from 100.8 Mg ha(-1) in BU forest to 294.8 Mg ha(-1) for the AP forest. The understory biomass ranged from 0.16 Mg ha(-1) in PD forest to 2.36 Mg ha(-1) in PW forest. Deadwood biomass ranged from 1.5 Mg ha(-1) in PD forest to 14.9 Mg ha(-1) for the AP forest, whereas forest floor litter ranged from 2.5 Mg ha(-1) in BU and JR forests to 3.1 Mg ha(-1) in MC forest. The total ecosystem carbon stocks varied from 112.5 to 205.7 Mg C ha(-1) across all the forest types. The C stocks of tree, understory, deadwood, litter, and soil ranged from 45.4 to 135.6, 0.08 to 1.18, 0.7 to 6.8, 1.1 to 1.4, and 39.1-91.4 Mg ha(-1), respectively, which accounted for 61.3, 0.2, 1.4, 0.8, and 36.3 % of the total carbon stock. BU forest accounted 65 % from soil C and 35 % from biomass, whereas PD forest contributed only 26 % from soil C and 74 % from biomass. Of the total C stock in the 0-30-cm soil, about 55 % was stored in the upper 0-10 cm. Soil C stocks in BU forest were significantly higher than those in other forests. The variability of C pools of different ecosystem components is influenced by vegetation type, stand structure, management history, and altitude. Our results reveal that a higher percentage (63 %) of C is stored in biomass and less in soil in these temperate forests except at the higher elevation broad-leaved BU forest. Results from this study will enhance our ability to evaluate the role of these forests in regional and global C cycles and have great implications for planning strategies for conservation. The study provides important data for developing and validating C cycling models for temperate forests.


Assuntos
Sequestro de Carbono , Carbono/análise , Monitoramento Ambiental , Florestas , Altitude , Biomassa , Ciclo do Carbono , Ecossistema , Índia , Pinus , Solo , Traqueófitas , Árvores/química
4.
Environ Monit Assess ; 187(11): 715, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26514798

RESUMO

Soil CO2 efflux was measured in four different coniferous forest types (Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), and Abies pindrow (AP)) for a period of 2 years (April 2012 to December 2013). The monthly soil CO2 efflux ranged from 0.8 to 4.1 µmoles CO2 m(-2) s(-1) in 2012 and 1.01 to 5.48 µmoles CO2 m(-2) s(-1) in 2013. The soil CO2 efflux rate was highest in PW forest type in both the years, while it was lowest in MC and CD forest types during 2012 and 2013, respectively. Soil temperature (TS) at a depth of 10 cm ranged from 3.8 to 19.4 °C in 2012 and 3.5 to 19.1 °C in 2013 in all the four forest types. Soil moisture (MS) ranged from 19.8 to 58.6% in 2012 and 18.5 to 58.6% in 2013. Soil CO2 efflux rate was found to be significantly higher in summer than the other seasons and least during winter. Soil CO2 efflux showed a significant positive relationship with TS (R2=0.52 to 0.74), SOC% (R2=0.67), pH (R2=0.68), and shrub biomass (R2=0.51), whereas, only a weak positive relationship was found with soil moisture (R2=0.16 to 0.41), tree density (R2=0.25), tree basal area (R2=0.01), tree biomass (R2=0.07), herb biomass (R2=0.01), and forest floor litter (R2=0.02). Thus, the study indicates that soil CO2 efflux in high mountainous areas is greatly influenced by seasons, soil temperature, and other environmental factors.


Assuntos
Dióxido de Carbono/análise , Monitoramento Ambiental , Florestas , Pinus/fisiologia , Solo/química , Biomassa , Índia , Estações do Ano , Temperatura , Árvores
5.
Microsc Res Tech ; 83(9): 1085-1094, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32306505

RESUMO

Silver nanoparticles (AgNPs), synthesized by green methods with the property to kill microbes, are highly valuable in medical sciences. So, the current study was aimed at using the flower extract of Wedelia urticifolia for synthesizing AgNPs with antibacterial properties. The AgNPs were produced by adding the extract to three different AgNO3 concentrations (1, 10, and 100 mM) in nine possible flower extract to metal salt ratios (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, and 1:9). The formation of brown color and the presence of a peak at 431 nm in the UV-Vis spectrum of the colloidal solution indicates the synthesis of AgNPs, which were also characterized by dynamic light scattering (DLS), Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The DLS results exposed that the smallest sized AgNPs were obtained in 10 mM AgNO3 solution and 4E6M was the optimized extract to metal salt solution ratio. The characterization techniques revealed that the synthesized AgNPs were spherical shaped and crystalline with a diameter of less than 30 nm. Furthermore, the synthesized nanoparticles were tested against two Gram-positive (Klebsiella pneumonia and Staphylococcus aureus) and two Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains for their antibacterial efficiency. Although the studied strains showed limited growth, overall, the effect of nanoparticles was found to be insignificant. It is concluded that the current study is advantageous over other previous studies because the AgNPs were synthesized at room temperature from 10 mM AgNO3 concentration in only 2 hours. Additionally, the present work is simple, ecofriendly, and in-expensive.


Assuntos
Bactérias/efeitos dos fármacos , Flores/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química , Prata/farmacologia , Antibacterianos/farmacologia , Química Verde , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Wedelia , Difração de Raios X
6.
Sci Rep ; 10(1): 13444, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778785

RESUMO

Tropical forests are rich in biodiversity with great potential for carbon (C) storage. We estimated ecosystem-level C stock using data from 70 forest plots in three major forest types: tropical dry deciduous (TDD I and TDD II), tropical semi-evergreen (TSE I and TSE II) and tropical evergreen forests (TEF I, TEF II and TEF III) of Kanyakumari Wildlife Sanctuary, Western Ghats, India. The average C stock in these forests was 336.8 Mg C/ha, of which 231.3, 3.0, 2.4, 15.2 and 84.9 Mg C/ha were stored in woody vegetation, understorey, litter, deadwood and soil respectively. The live vegetation, detritus and soil contributed 65.5%, 5.5% and 29% respectively to the total ecosystem-level C stock and distributed in forest types in the order: TEF III > TEF II > TEF I > TSE I > TDD II > TSE II > TDD I. The plant diversity, structural attributes and environmental factors showed significant positive correlations with C stocks and accounted for 6.7, 77.2 and 16% of variance. These findings indicate that the tropical forests in the Western Ghats store large amount of C, and resulting data are invaluable for planning and monitoring forest conservation and management programs to enhance C storage in tropical forests.

7.
Appl Biochem Biotechnol ; 184(4): 1094-1105, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28952017

RESUMO

A marine Bacillus cereus (VCRC B540) with mosquitocidal effect was recently reported from red snapper fish (Lutjanus sanguineous) gut and surface layer protein (S-layer protein, SLP) was reported to be mosquito larvicidal factor. In this present study, the gene encoding the surface layer protein was amplified from the genomic DNA and functionally characterized. Amplification of SLP-encoding gene revealed 1,518 bp PCR product, and analysis of the sequence revealed the presence of 1482 bp open reading frame with coding capacity for a polypeptide of 493 amino acids. Phylogenetic analysis revealed with homology among closely related Bacillus cereus groups of organisms as well as Bacillus strains. Removal of nucleotides encoding signaling peptide revealed the functional cloning fragment of length 1398 bp. Theoretical molecular weight (51.7 kDa) and isoelectric point (5.99) of the deduced functional SLP protein were predicted using ProtParam. The amplified PCR product was cloned into a plasmid vector (pGEM-T), and the open reading frame free off signaling peptide was subsequently cloned inpET-28a(+) and expressed in Escherichia coli BL21 (DE3). The isopropyl-ß-D-thiogalactopyranoside (IPTG)-induced recombinant SLP was confirmed using western blotting, and functional SLP revealed mosquito larvicidal property. Therefore, the major findings revealed that SLP is a factor responsible for mosquitocidal activity, and the molecular characterization of this toxin was extensively studied.


Assuntos
Bacillus cereus , Inseticidas/química , Glicoproteínas de Membrana , Bacillus cereus/química , Bacillus cereus/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA