Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO J ; 27(1): 51-61, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18079698

RESUMO

Human UNG2 is a multifunctional glycosylase that removes uracil near replication forks and in non-replicating DNA, and is important for affinity maturation of antibodies in B cells. How these diverse functions are regulated remains obscure. Here, we report three new phosphoforms of the non-catalytic domain that confer distinct functional properties to UNG2. These are apparently generated by cyclin-dependent kinases through stepwise phosphorylation of S23, T60 and S64 in the cell cycle. Phosphorylation of S23 in late G1/early S confers increased association with replication protein A (RPA) and replicating chromatin and markedly increases the catalytic turnover of UNG2. Conversely, progressive phosphorylation of T60 and S64 throughout S phase mediates reduced binding to RPA and flag UNG2 for breakdown in G2 by forming a cyclin E/c-myc-like phosphodegron. The enhanced catalytic turnover of UNG2 p-S23 likely optimises the protein to excise uracil along with rapidly moving replication forks. Our findings may aid further studies of how UNG2 initiates mutagenic rather than repair processing of activation-induced deaminase-generated uracil at Ig loci in B cells.


Assuntos
Ciclo Celular/fisiologia , DNA Glicosilases/metabolismo , Proteína de Replicação A/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Bovinos , DNA Glicosilases/química , DNA Glicosilases/genética , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína de Replicação A/fisiologia , Serina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Treonina/metabolismo , Uracila/metabolismo
2.
Nucleic Acids Res ; 38(19): 6447-55, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20525795

RESUMO

Human AlkB homologues ABH2 and ABH3 repair 1-methyladenine and 3-methylcytosine in DNA/RNA by oxidative demethylation. The enzymes have similar overall folds and active sites, but are functionally divergent. ABH2 efficiently demethylates both single- and double-stranded (ds) DNA, whereas ABH3 has a strong preference for single-stranded DNA and RNA. We find that divergent F1 ß-hairpins in proximity of the active sites of ABH2 and ABH3 are central for substrate specificities. Swapping F1 hairpins between the enzymes resulted in hybrid proteins resembling the donor proteins. Surprisingly, mutation of the intercalating residue F102 had little effect on activity, while the double mutant V101A/F102A was catalytically impaired. These residues form part of an important hydrophobic network only present in ABH2. In this functionally important network, F124 stacks with the flipped out base while L157 apparently functions as a buffer stop to position the lesion in the catalytic pocket for repair. F1 in ABH3 contains charged and polar residues preventing use of dsDNA substrate. Thus, E123 in ABH3 corresponds to F102 in ABH2 and the E123F-variant gained capacity to repair dsDNA with no loss in single strand repair capacity. In conclusion, divergent sequences outside of the active site determine substrate specificities of ABH2 and ABH3.


Assuntos
Enzimas Reparadoras do DNA/química , DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Dioxigenases/química , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Domínio Catalítico , DNA/química , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/química , Dioxigenases/genética , Dioxigenases/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Especificidade por Substrato
3.
DNA Repair (Amst) ; 7(11): 1916-23, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18723127

RESUMO

Aberrant methylations in DNA are repaired by base excision repair (BER) and direct repair by a methyltransferase or by an oxidative demethylase of the AlkB type. Yang et al. [Nature 452 (2008) 961-966] have now solved the crystal structure of AlkB and human AlkB homolog 2 (hABH2) in complex with DNA using an ingenious crosslinking strategy to stabilize the DNA-protein complex. AlkB proteins have similar catalytic domains, but different DNA recognition motifs. Whereas AlkB mainly makes contact with the damaged strand, hABH2 makes numerous contacts with both strands. hABH2 flips out the damaged base and fills the vacant space by a hydrophobic amino acid residue similar to DNA glycosylases, essentially without distorting the double helix structure. In contrast, AlkB squeezes together the bases flanking the flipped-out base to maintain the base stack. This unprecedented flipping mechanism and the differences between AlkB and hABH2 in contacting the DNA strands explain their preferences for single stranded- and double stranded DNA, respectively.


Assuntos
Enzimas Reparadoras do DNA/química , Reparo do DNA , DNA/genética , Dioxigenases/química , Proteínas de Escherichia coli/química , Oxigenases de Função Mista/química , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA , Metilação de DNA , Enzimas Reparadoras do DNA/fisiologia , Dioxigenases/fisiologia , Conformação Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA/química , Homologia de Sequência de Aminoácidos
4.
Nucleic Acids Res ; 35(12): 3879-92, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17537817

RESUMO

DNA glycosylases UNG and SMUG1 excise uracil from DNA and belong to the same protein superfamily. Vertebrates contain both SMUG1 and UNG, but their distinct roles in base excision repair (BER) of deaminated cytosine (U:G) are still not fully defined. Here we have examined the ability of human SMUG1 and UNG2 (nuclear UNG) to initiate and coordinate repair of U:G mismatches. When expressed in Escherichia coli cells, human UNG2 initiates complete repair of deaminated cytosine, while SMUG1 inhibits cell proliferation. In vitro, we show that SMUG1 binds tightly to AP-sites and inhibits AP-site cleavage by AP-endonucleases. Furthermore, a specific motif important for the AP-site product binding has been identified. Mutations in this motif increase catalytic turnover due to reduced product binding. In contrast, the highly efficient UNG2 lacks product-binding capacity and stimulates AP-site cleavage by APE1, facilitating the two first steps in BER. In summary, this work reveals that SMUG1 and UNG2 coordinate the initial steps of BER by distinct mechanisms. UNG2 is apparently adapted to rapid and highly coordinated repair of uracil (U:G and U:A) in replicating DNA, while the less efficient SMUG1 may be more important in repair of deaminated cytosine (U:G) in non-replicating chromatin.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , Uracila-DNA Glicosidase/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Pareamento Incorreto de Bases , Sítios de Ligação , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Células Eucarióticas/enzimologia , Teste de Complementação Genética , Humanos , Células Procarióticas/enzimologia , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/genética
5.
Nucleic Acids Res ; 32(11): 3456-61, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15229293

RESUMO

Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxigenases de Função Mista/metabolismo , Homólogo AlkB 1 da Histona H2a Dioxigenase , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Metilação de DNA , Enzimas Reparadoras do DNA , DNA de Cadeia Simples/metabolismo , Dioxigenases , Humanos , Magnésio/farmacologia , Metilação , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , RNA/metabolismo , RNA Complementar/química , RNA de Cadeia Dupla/metabolismo , Especificidade por Substrato
6.
J Mol Biol ; 342(3): 787-99, 2004 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-15342237

RESUMO

Enzymes involved in genomic maintenance of human parasites are attractive targets for parasite-specific drugs. The parasitic protozoan Trypanosoma cruzi contains at least two enzymes involved in the protection against potentially mutagenic uracil, a deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and a uracil-DNA glycosylase belonging to the highly conserved UNG-family. Uracil-DNA glycosylase activities excise uracil from DNA and initiate a multistep base-excision repair (BER) pathway to restore the correct nucleotide sequence. Here we report the biochemical characterisation of T.cruzi UNG (TcUNG) and its contribution to the total uracil repair activity in T.cruzi. TcUNG is shown to be the major uracil-DNA glycosylase in T.cruzi. The purified recombinant TcUNG exhibits substrate preference for removal of uracil in the order ssU>U:G>U:A, and has no associated thymine-DNA glycosylase activity. T.cruzi apparently repairs U:G DNA substrate exclusively via short-patch BER, but the DNA polymerase involved surprisingly displays a vertebrate POLdelta-like pattern of inhibition. Back-up UDG activities such as SMUG, TDG and MBD4 were not found, underlying the importance of the TcUNG enzyme in protection against uracil in DNA and as a potential target for drug therapy.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , Trypanosoma cruzi/enzimologia , Uracila/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , DNA/química , DNA/genética , DNA/metabolismo , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trypanosoma cruzi/genética , Uracila-DNA Glicosidase
7.
Mutat Res ; 577(1-2): 55-76, 2005 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-15941573

RESUMO

The discoveries of nucleotide excision repair and transcription-coupled repair led by Phil Hanawalt and a few colleagues sparked a dramatic evolution in our understanding of DNA and molecular biology by revealing the intriguing systems of DNA repair essential to life. In fact, modifications of the cut-and-patch principles identified by Phil Hanawalt and colleagues underlie many of the common themes for the recognition and removal of damaged DNA bases outlined in this review. The emergence of these common themes and a unified understanding have been greatly aided from the direct visualizations of repair proteins and their interactions with damaged DNA by structural biology. These visualizations of DNA repair structures have complemented the increasing wealth of biochemical and genetic information on DNA base damage responses by revealing general themes for the recognition of damaged bases, such as sequence-independent DNA recognition motifs, minor groove reading heads for initial damage recognition, and nucleotide flipping from the major groove into active-site pockets for high specificity of base damage recognition and removal. We know that repair intermediates are as harmful as the initial damage itself, and that these intermediates are protected from one repair step to the next by the enzymes involved, such that pathway-specific handoffs must be efficiently coordinated. Here we focus on the structural biology of the repair enzymes and proteins that recognize specific base lesions and either initiate the base excision repair pathway or directly repair the damage in one step. This understanding of the molecular basis for DNA base integrity is fundamental to resolving key scientific, medical, and public health issues, including the evaluation of the risks from inherited repair protein mutations, environmental toxins, and medical procedures.


Assuntos
Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , Modelos Moleculares , Estrutura Molecular
8.
J Mol Biol ; 425(2): 424-43, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23183374

RESUMO

Activation-induced cytidine deaminase (AID) is a DNA mutator enzyme essential for adaptive immunity. AID initiates somatic hypermutation and class switch recombination (CSR) by deaminating cytosine to uracil in specific immunoglobulin (Ig) gene regions. However, other loci, including cancer-related genes, are also targeted. Thus, tight regulation of AID is crucial to balance immunity versus disease such as cancer. AID is regulated by several mechanisms including nucleocytoplasmic shuttling. Here we have studied nuclear import kinetics and subnuclear trafficking of AID in live cells and characterized in detail its nuclear localization signal. Importantly, we find that the nuclear localization signal motif also directs AID to nucleoli where it colocalizes with its interaction partner, catenin-ß-like 1 (CTNNBL1), and physically associates with nucleolin and nucleophosmin. Moreover, we demonstrate that release of AID from nucleoli is dependent on its C-terminal motif. Finally, we find that CSR efficiency correlates strongly with the arithmetic product of AID nuclear import rate and DNA deamination activity. Our findings suggest that directional nucleolar transit is important for the physiological function of AID and demonstrate that nuclear/nucleolar import and DNA cytosine deamination together define the biological activity of AID. This is the first study on subnuclear trafficking of AID and demonstrates a new level in its complex regulation. In addition, our results resolve the problem related to dissociation of deamination activity and CSR activity of AID mutants.


Assuntos
Nucléolo Celular/metabolismo , Citidina Desaminase/metabolismo , DNA/metabolismo , Switching de Imunoglobulina/fisiologia , Sinais de Localização Nuclear , Hipermutação Somática de Imunoglobulina/genética , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/patologia , Nucléolo Celular/genética , Células Cultivadas , Citidina Desaminase/química , Citidina Desaminase/genética , Desaminação , Imunofluorescência , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Rim/citologia , Rim/enzimologia , Mutação/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Osteossarcoma/enzimologia , Osteossarcoma/patologia , Fosfoproteínas/metabolismo , Conformação Proteica , Proteínas de Ligação a RNA/metabolismo , Recombinação Genética , Nucleolina
9.
Environ Mol Mutagen ; 52(8): 623-35, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21786338

RESUMO

XRCC1 is a scaffold protein capable of interacting with several DNA repair proteins. Here we provide evidence for the presence of XRCC1 in different complexes of sizes from 200 to 1500 kDa, and we show that immunoprecipitates using XRCC1 as bait are capable of complete repair of AP sites via both short patch (SP) and long patch (LP) base excision repair (BER). We show that POLß and PNK colocalize with XRCC1 in replication foci and that POLß and PNK, but not PCNA, colocalize with constitutively present XRCC1-foci as well as damage-induced foci when low doses of a DNA-damaging agent are applied. We demonstrate that the laser dose used for introducing DNA damage determines the repertoire of DNA repair proteins recruited. Furthermore, we demonstrate that recruitment of POLß and PNK to regions irradiated with low laser dose requires XRCC1 and that inhibition of PARylation by PARP-inhibitors only slightly reduces the recruitment of XRCC1, PNK, or POLß to sites of DNA damage. Recruitment of PCNA and FEN-1 requires higher doses of irradiation and is enhanced by XRCC1, as well as by accumulation of PARP-1 at the site of DNA damage. These data improve our understanding of recruitment of BER proteins to sites of DNA damage and provide evidence for a role of XRCC1 in the organization of BER into multiprotein complexes of different sizes.


Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Animais , Western Blotting , Células CHO , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Quebras de DNA de Cadeia Simples/efeitos da radiação , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta à Radiação , Células HeLa , Humanos , Imunoprecipitação , Lasers , Microscopia Confocal , Modelos Biológicos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Polinucleotídeo 5'-Hidroxiquinase/genética , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
10.
J Mol Biol ; 381(2): 276-88, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18599070

RESUMO

Here, we report the molecular characterization of the human cytomegalovirus uracil DNA glycosylase (UNG) UL114. Purified UL114 was shown to be a DNA glycosylase, which removes uracil from double-stranded and single-stranded DNA. However, kinetic analysis has shown that viral UNG removed uracil more slowly compared with the core form of human UNG (Delta84hUNG), which has a catalytic efficiency (k(cat)/K(M)) 350- to 650-fold higher than that of UL114. Furthermore, UL114 showed a maximum level of DNA glycosylase activity at equimolar concentrations of the viral polymerase processivity factor UL44. Next, UL114 was coprecipitated with DNA immobilized to magnetic beads only in the presence of UL44, suggesting that UL44 facilitated the loading of UL114 on DNA. Moreover, mutant analysis demonstrated that the C-terminal part of UL44 (residues 291-433) is important for the interplay with UL114. Immunofluorescence microscopy revealed that UL44 and UL114 colocalized in numerous small punctuate foci at the immediate-early (5 and 8 hpi) phases of infection and that these foci grew in size throughout the infection. Furthermore, coimmunoprecipitation assays with cellular extracts of infected cells confirmed that UL44 associated with UL114. Finally, the nuclear concentration of UL114 was estimated to be 5- to 10-fold higher than that of UL44 in infected cells, which indicated a UL44-independent role of UL114. In summary, our data have demonstrated a catalytically inefficient viral UNG that was highly enriched in viral replication foci, thus supporting an important role of UL114 in replication rather than repair of the viral genome.


Assuntos
Citomegalovirus/enzimologia , Proteínas de Ligação a DNA/metabolismo , Uracila-DNA Glicosidase/metabolismo , Proteínas Virais/metabolismo , Sítios de Ligação/genética , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/crescimento & desenvolvimento , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Poliacrilamida , Fibroblastos/citologia , Fibroblastos/virologia , Humanos , Imunoprecipitação , Cinética , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Mutação , Fases de Leitura Aberta/genética , Ligação Proteica , Uracila/metabolismo , Uracila-DNA Glicosidase/genética , Proteínas Virais/genética
11.
J Biol Chem ; 283(36): 25046-56, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18603530

RESUMO

The Escherichia coli AlkB protein and human homologs hABH2 and hABH3 are 2-oxoglutarate (2OG)/Fe(II)-dependent DNA/RNA demethylases that repair 1-methyladenine and 3-methylcytosine residues. Surprisingly, hABH1, which displays the strongest homology to AlkB, failed to show repair activity in two independent studies. Here, we show that hABH1 is a mitochondrial protein, as demonstrated using fluorescent fusion protein expression, immunocytochemistry, and Western blot analysis. A fraction is apparently nuclear and this fraction increases strongly if the fluorescent tag is placed at the N-terminal end of the protein, thus interfering with mitochondrial targeting. Molecular modeling of hABH1 based upon the sequence and known structures of AlkB and hABH3 suggested an active site almost identical to these enzymes. hABH1 decarboxylates 2OG in the absence of a prime substrate, and the activity is stimulated by methylated nucleotides. Employing three different methods we demonstrate that hABH1 demethylates 3-methylcytosine in single-stranded DNA and RNA in vitro. Site-specific mutagenesis confirmed that the putative Fe(II) and 2OG binding residues are essential for activity. In conclusion, hABH1 is a functional mitochondrial AlkB homolog that repairs 3-methylcytosine in single-stranded DNA and RNA.


Assuntos
Citosina/análogos & derivados , Enzimas Reparadoras do DNA/metabolismo , DNA Mitocondrial/metabolismo , DNA de Cadeia Simples/metabolismo , Dioxigenases/metabolismo , Proteínas Mitocondriais/metabolismo , RNA/metabolismo , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Citosina/metabolismo , Metilação de DNA , Enzimas Reparadoras do DNA/genética , DNA Mitocondrial/genética , DNA de Cadeia Simples/genética , Dioxigenases/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Proteínas Mitocondriais/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mitocondrial , Homologia de Sequência de Aminoácidos
12.
Curr Pharm Biotechnol ; 8(6): 326-31, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18289040

RESUMO

Elaborate repair pathways counteract the deleterious effects of DNA damage by mechanisms that are understood in reasonable detail. In contrast, repair of damaged RNA has not been widely explored. This may be because aberrant RNAs are generally assumed to be degraded rather than repaired. The reason for this view is well founded, since conserved surveillance mechanisms that degrade abnormal RNAs are thoroughly documented. Numerous proteins and protein-RNA complexes are involved in the metabolism of different RNA species, assuring correct transcription, splicing, posttranscriptional modifications, transport, translation and timely degradation of the molecule. However, like DNA, RNA is under constant attack of various environmental and endogenous agents that damage the molecule, such as alkylating agents, radiation and free radicals. Importantly, many DNA damaging drugs used in cancer therapy also modify RNA, presumably causing delayed or faulty translation. This may result in generation of inactive proteins, dominant negative proteins or toxic protein aggregates. Several lines of evidence indicate RNA repair as a possible cellular defence mechanism to cope with RNA damage. Thus, there are convincing examples of tRNA repair by elongation of truncated forms, and repair of cleaved tRNA by T4 phage proteins. In addition, in vitro repair of aberrant tRNA methylation by a methyl transferase has been reported. Finally, recent reports on repair of chemically methylated RNA by AlkB and a human homologue (hABH3) in vitro and in vivo strengthen the idea of RNA base repair as a cellular defence mechanism.


Assuntos
Dano ao DNA , Reparo do DNA , Neoplasias/genética , Doenças Neurodegenerativas/genética , Estabilidade de RNA/genética , RNA , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Animais , Enzimas Reparadoras do DNA/genética , Dioxigenases/genética , Proteínas de Escherichia coli/genética , Humanos , Metilação , Oxigenases de Função Mista/genética , RNA/genética , RNA/metabolismo
13.
EMBO J ; 25(14): 3389-97, 2006 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16858410

RESUMO

Methylating agents are ubiquitous in the environment, and central in cancer therapy. The 1-methyladenine and 3-methylcytosine lesions in DNA/RNA contribute to the cytotoxicity of such agents. These lesions are directly reversed by ABH3 (hABH3) in humans and AlkB in Escherichia coli. Here, we report the structure of the hABH3 catalytic core in complex with iron and 2-oxoglutarate (2OG) at 1.5 A resolution and analyse key site-directed mutants. The hABH3 structure reveals the beta-strand jelly-roll fold that coordinates a catalytically active iron centre by a conserved His1-X-Asp/Glu-X(n)-His2 motif. This experimentally establishes hABH3 as a structural member of the Fe(II)/2OG-dependent dioxygenase superfamily, which couples substrate oxidation to conversion of 2OG into succinate and CO2. A positively charged DNA/RNA binding groove indicates a distinct nucleic acid binding conformation different from that predicted in the AlkB structure with three nucleotides. These results uncover previously unassigned key catalytic residues, identify a flexible hairpin involved in nucleotide flipping and ss/ds-DNA discrimination, and reveal self-hydroxylation of an active site leucine that may protect against uncoupled generation of dangerous oxygen radicals.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/química , RNA/metabolismo , Homólogo AlkB 1 da Histona H2a Dioxigenase , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Metilação de DNA , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Dioxigenases , Humanos , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Oxirredução
14.
J Biol Chem ; 277(42): 39926-36, 2002 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-12161446

RESUMO

hUNG2 and hSMUG1 are the only known glycosylases that may remove uracil from both double- and single-stranded DNA in nuclear chromatin, but their relative contribution to base excision repair remains elusive. The present study demonstrates that both enzymes are strongly stimulated by physiological concentrations of Mg2+, at which the activity of hUNG2 is 2-3 orders of magnitude higher than of hSMUG1. Moreover, Mg2+ increases the preference of hUNG2 toward uracil in ssDNA nearly 40-fold. APE1 has a strong stimulatory effect on hSMUG1 against dsU, apparently because of enhanced dissociation of hSMUG1 from AP sites in dsDNA. hSMUG1 also has a broader substrate specificity than hUNG2, including 5-hydroxymethyluracil and 3,N(4)-ethenocytosine. hUNG2 is excluded from, whereas hSMUG1 accumulates in, nucleoli in living cells. In contrast, only hUNG2 accumulates in replication foci in the S-phase. hUNG2 in nuclear extracts initiates base excision repair of plasmids containing either U:A and U:G in vitro. Moreover, an additional but delayed repair of the U:G plasmid is observed that is not inhibited by neutralizing antibodies against hUNG2 or hSMUG1. We propose a model in which hUNG2 is responsible for both prereplicative removal of deaminated cytosine and postreplicative removal of misincorporated uracil at the replication fork. We also provide evidence that hUNG2 is the major enzyme for removal of deaminated cytosine outside of replication foci, with hSMUG1 acting as a broad specificity backup.


Assuntos
DNA Glicosilases , DNA de Cadeia Simples/química , N-Glicosil Hidrolases/fisiologia , Uracila/química , Animais , Sítios de Ligação , Bovinos , Ciclo Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Clonagem Molecular , Reparo do DNA , DNA de Cadeia Simples/metabolismo , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Imunoglobulina G/metabolismo , Cinética , Cloreto de Magnésio/farmacologia , Microscopia de Fluorescência , Modelos Biológicos , N-Glicosil Hidrolases/química , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes/metabolismo , Sais/farmacologia , Especificidade por Substrato , Células Tumorais Cultivadas , Uracila-DNA Glicosidase
15.
Nature ; 421(6925): 859-63, 2003 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-12594517

RESUMO

Repair of DNA damage is essential for maintaining genome integrity, and repair deficiencies in mammals are associated with cancer, neurological disease and developmental defects. Alkylation damage in DNA is repaired by at least three different mechanisms, including damage reversal by oxidative demethylation of 1-methyladenine and 3-methylcytosine by Escherichia coli AlkB. By contrast, little is known about consequences and cellular handling of alkylation damage to RNA. Here we show that two human AlkB homologues, hABH2 and hABH3, also are oxidative DNA demethylases and that AlkB and hABH3, but not hABH2, also repair RNA. Whereas AlkB and hABH3 prefer single-stranded nucleic acids, hABH2 acts more efficiently on double-stranded DNA. In addition, AlkB and hABH3 expressed in E. coli reactivate methylated RNA bacteriophage MS2 in vivo, illustrating the biological relevance of this repair activity and establishing RNA repair as a potentially important defence mechanism in living cells. The different catalytic properties and the different subnuclear localization patterns shown by the human homologues indicate that hABH2 and hABH3 have distinct roles in the cellular response to alkylation damage.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , Metilação de DNA , Reparo do DNA , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxigenases de Função Mista/metabolismo , RNA/metabolismo , Homólogo AlkB 1 da Histona H2a Dioxigenase , Alquilação , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Linhagem Celular , Clonagem Molecular , DNA/química , Dano ao DNA/genética , Enzimas Reparadoras do DNA , Escherichia coli/genética , Escherichia coli/virologia , Proteínas de Escherichia coli/química , Humanos , Oxigenases de Função Mista/química , Dados de Sequência Molecular , Transporte Proteico , RNA/química , Alinhamento de Sequência , Ativação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA