Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(12): 3222-3241.e26, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004146

RESUMO

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.


Assuntos
Hipocampo/citologia , Neocórtex/citologia , Transcriptoma/genética , Animais , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Cell ; 181(4): 936-953.e20, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32386544

RESUMO

Recent large-scale collaborations are generating major surveys of cell types and connections in the mouse brain, collecting large amounts of data across modalities, spatial scales, and brain areas. Successful integration of these data requires a standard 3D reference atlas. Here, we present the Allen Mouse Brain Common Coordinate Framework (CCFv3) as such a resource. We constructed an average template brain at 10 µm voxel resolution by interpolating high resolution in-plane serial two-photon tomography images with 100 µm z-sampling from 1,675 young adult C57BL/6J mice. Then, using multimodal reference data, we parcellated the entire brain directly in 3D, labeling every voxel with a brain structure spanning 43 isocortical areas and their layers, 329 subcortical gray matter structures, 81 fiber tracts, and 8 ventricular structures. CCFv3 can be used to analyze, visualize, and integrate multimodal and multiscale datasets in 3D and is openly accessible (https://atlas.brain-map.org/).


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Animais , Atlas como Assunto , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Cell ; 174(2): 465-480.e22, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007418

RESUMO

Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.


Assuntos
Encéfalo/metabolismo , Técnicas de Inativação de Genes/métodos , Genes Reporter , Animais , Encéfalo/citologia , Cálcio/metabolismo , Linhagem Celular , Hibridização in Situ Fluorescente , Luz , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Neurônios/metabolismo , Optogenética , RNA não Traduzido/genética , Transgenes/genética
4.
Cell ; 149(2): 483-96, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500809

RESUMO

Although there have been major advances in elucidating the functional biology of the human brain, relatively little is known of its cellular and molecular organization. Here we report a large-scale characterization of the expression of ∼1,000 genes important for neural functions by in situ hybridization at a cellular resolution in visual and temporal cortices of adult human brains. These data reveal diverse gene expression patterns and remarkable conservation of each individual gene's expression among individuals (95%), cortical areas (84%), and between human and mouse (79%). A small but substantial number of genes (21%) exhibited species-differential expression. Distinct molecular signatures, comprised of genes both common between species and unique to each, were identified for each major cortical cell type. The data suggest that gene expression profile changes may contribute to differential cortical function across species, and in particular, a shift from corticosubcortical to more predominant corticocortical communications in the human brain.


Assuntos
Perfilação da Expressão Gênica , Neocórtex/metabolismo , Lobo Temporal/metabolismo , Córtex Visual/metabolismo , Adulto , Animais , Regulação da Expressão Gênica , Humanos , Camundongos , Neocórtex/citologia , Neurônios/metabolismo , Especificidade da Espécie , Lobo Temporal/citologia , Córtex Visual/citologia
5.
Nature ; 598(7879): 174-181, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616072

RESUMO

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.


Assuntos
Encéfalo/citologia , Forma Celular , Neurônios/classificação , Neurônios/metabolismo , Análise de Célula Única , Atlas como Assunto , Biomarcadores/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neocórtex/anatomia & histologia , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/metabolismo , Neurogênese , Neuroglia/citologia , Neurônios/citologia , RNA-Seq , Reprodutibilidade dos Testes
6.
Nature ; 563(7729): 72-78, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30382198

RESUMO

The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.


Assuntos
Perfilação da Expressão Gênica , Neocórtex/citologia , Neocórtex/metabolismo , Animais , Biomarcadores/análise , Feminino , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Córtex Motor/anatomia & histologia , Córtex Motor/citologia , Córtex Motor/metabolismo , Neocórtex/anatomia & histologia , Especificidade de Órgãos , Análise de Sequência de RNA , Análise de Célula Única , Córtex Visual/anatomia & histologia , Córtex Visual/citologia , Córtex Visual/metabolismo
7.
Nature ; 535(7612): 367-75, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27409810

RESUMO

The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (Macaca mulatta) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Macaca mulatta/genética , Transcriptoma , Envelhecimento/genética , Animais , Transtorno do Espectro Autista/genética , Encéfalo/citologia , Encéfalo/embriologia , Adesão Celular , Sequência Conservada , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Fatores de Risco , Esquizofrenia/genética , Análise Espaço-Temporal , Especificidade da Espécie , Transcrição Gênica/genética
8.
Nature ; 508(7495): 199-206, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24695229

RESUMO

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


Assuntos
Encéfalo/metabolismo , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Transcriptoma , Anatomia Artística , Animais , Atlas como Assunto , Encéfalo/embriologia , Sequência Conservada/genética , Feto/citologia , Feto/embriologia , Redes Reguladoras de Genes/genética , Humanos , Camundongos , Neocórtex/embriologia , Neocórtex/metabolismo , Especificidade da Espécie
9.
Hum Mol Genet ; 24(15): 4327-39, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25954031

RESUMO

Developmental changes in the temporal and spatial regulation of gene expression drive the emergence of normal mature brain function, while disruptions in these processes underlie many neurodevelopmental abnormalities. To solidify our foundational knowledge of such changes in a primate brain with an extended period of postnatal maturation like in human, we investigated the whole-genome transcriptional profiles of rhesus monkey brains from birth to adulthood. We found that gene expression dynamics are largest from birth through infancy, after which gene expression profiles transition to a relatively stable state by young adulthood. Biological pathway enrichment analysis revealed that genes more highly expressed at birth are associated with cell adhesion and neuron differentiation, while genes more highly expressed in juveniles and adults are associated with cell death. Neocortex showed significantly greater differential expression over time than subcortical structures, and this trend likely reflects the protracted postnatal development of the cortex. Using network analysis, we identified 27 co-expression modules containing genes with highly correlated expression patterns that are associated with specific brain regions, ages or both. In particular, one module with high expression in neonatal cortex and striatum that decreases during infancy and juvenile development was significantly enriched for autism spectrum disorder (ASD)-related genes. This network was enriched for genes associated with axon guidance and interneuron differentiation, consistent with a disruption in the formation of functional cortical circuitry in ASD.


Assuntos
Transtorno do Espectro Autista/genética , Córtex Cerebral/metabolismo , Macaca mulatta/genética , Transcriptoma/genética , Fatores Etários , Animais , Transtorno do Espectro Autista/patologia , Córtex Cerebral/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Humanos , Macaca mulatta/crescimento & desenvolvimento , Neurogênese/genética
10.
N Engl J Med ; 370(13): 1209-1219, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24670167

RESUMO

BACKGROUND: Autism involves early brain overgrowth and dysfunction, which is most strongly evident in the prefrontal cortex. As assessed on pathological analysis, an excess of neurons in the prefrontal cortex among children with autism signals a disturbance in prenatal development and may be concomitant with abnormal cell type and laminar development. METHODS: To systematically examine neocortical architecture during the early years after the onset of autism, we used RNA in situ hybridization with a panel of layer- and cell-type-specific molecular markers to phenotype cortical microstructure. We assayed markers for neurons and glia, along with genes that have been implicated in the risk of autism, in prefrontal, temporal, and occipital neocortical tissue from postmortem samples obtained from children with autism and unaffected children between the ages of 2 and 15 years. RESULTS: We observed focal patches of abnormal laminar cytoarchitecture and cortical disorganization of neurons, but not glia, in prefrontal and temporal cortical tissue from 10 of 11 children with autism and from 1 of 11 unaffected children. We observed heterogeneity between cases with respect to cell types that were most abnormal in the patches and the layers that were most affected by the pathological features. No cortical layer was uniformly spared, with the clearest signs of abnormal expression in layers 4 and 5. Three-dimensional reconstruction of layer markers confirmed the focal geometry and size of patches. CONCLUSIONS: In this small, explorative study, we found focal disruption of cortical laminar architecture in the cortexes of a majority of young children with autism. Our data support a probable dysregulation of layer formation and layer-specific neuronal differentiation at prenatal developmental stages. (Funded by the Simons Foundation and others.).


Assuntos
Transtorno Autístico/patologia , Neocórtex/ultraestrutura , Adolescente , Transtorno Autístico/genética , Biomarcadores/análise , Biomarcadores/metabolismo , Calbindina 1/genética , Contagem de Células , Criança , Pré-Escolar , Crioultramicrotomia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Expressão Gênica , Humanos , Imageamento Tridimensional , Hibridização In Situ , Neocórtex/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas de Neurofilamentos/genética , Neurogênese , Neurônios/patologia , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , RNA/genética
11.
Development ; 140(22): 4633-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24154525

RESUMO

The neurogenic potential of the subgranular zone (SGZ) of the hippocampal dentate gyrus is likely to be regulated by molecular cues arising from its complex heterogeneous cellular environment. Through transcriptome analysis using laser microdissection coupled with DNA microarrays, in combination with analysis of genome-wide in situ hybridization data, we identified 363 genes selectively enriched in adult mouse SGZ. These genes reflect expression in the different constituent cell types, including progenitor and dividing cells, immature granule cells, astrocytes, oligodendrocytes and GABAergic interneurons. Similar transcriptional profiling in the rhesus monkey dentate gyrus across postnatal development identified a highly overlapping set of SGZ-enriched genes, which can be divided based on temporal profiles to reflect maturation of glia versus granule neurons. Furthermore, we identified a neurogenesis-related gene network with decreasing postnatal expression that is highly correlated with the declining number of proliferating cells in dentate gyrus over postnatal development. Many of the genes in this network showed similar postnatal downregulation in mouse, suggesting a conservation of molecular mechanisms underlying developmental and adult neurogenesis in rodents and primates. Conditional deletion of Sox4 and Sox11, encoding two neurogenesis-related transcription factors central in this network, produces a mouse with no hippocampus, confirming the crucial role for these genes in regulating hippocampal neurogenesis.


Assuntos
Perfilação da Expressão Gênica , Hipocampo/metabolismo , Macaca mulatta/genética , Neurogênese/genética , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genoma/genética , Hipocampo/citologia , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Análise Espaço-Temporal , Transcrição Gênica
12.
Methods ; 73: 27-37, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448302

RESUMO

During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Imagem de Tensor de Difusão/métodos , Substância Branca/embriologia , Substância Branca/crescimento & desenvolvimento , Encéfalo/metabolismo , Criança , Pré-Escolar , Feminino , Desenvolvimento Fetal/fisiologia , Humanos , Masculino , Gravidez , Estatística como Assunto/métodos , Substância Branca/metabolismo
13.
Methods ; 73: 90-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25637033

RESUMO

The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. All data were aligned to a common template in 3D space to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. A suite of computational tools were developed to search and visualize the projection labeling experiments, available at http://connectivity.brain-map.org. We present three use cases illustrating how these publicly-available tools can be used to perform analyses of long range brain region connectivity. The use cases make extensive use of advanced visualization tools integrated with the atlas including projection density histograms, 3D computed anterograde and retrograde projection paths, and multi-specimen projection composites. These tools offer convenient access to detailed axonal projection information in the adult mouse brain and the ability to perform data analysis and visualization of projection fields and neuroanatomy in an integrated manner.


Assuntos
Atlas como Assunto , Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Rede Nervosa/anatomia & histologia , Fatores Etários , Animais , Encéfalo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/química , Rede Nervosa/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/química , Vias Neurais/fisiologia
14.
Methods ; 73: 4-17, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25536338

RESUMO

The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases.


Assuntos
Atlas como Assunto , Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Informática/métodos , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/tendências , Humanos , Informática/tendências , Camundongos , Camundongos Endogâmicos C57BL
15.
Nucleic Acids Res ; 41(Database issue): D996-D1008, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193282

RESUMO

The Allen Brain Atlas (http://www.brain-map.org) provides a unique online public resource integrating extensive gene expression data, connectivity data and neuroanatomical information with powerful search and viewing tools for the adult and developing brain in mouse, human and non-human primate. Here, we review the resources available at the Allen Brain Atlas, describing each product and data type [such as in situ hybridization (ISH) and supporting histology, microarray, RNA sequencing, reference atlases, projection mapping and magnetic resonance imaging]. In addition, standardized and unique features in the web applications are described that enable users to search and mine the various data sets. Features include both simple and sophisticated methods for gene searches, colorimetric and fluorescent ISH image viewers, graphical displays of ISH, microarray and RNA sequencing data, Brain Explorer software for 3D navigation of anatomy and gene expression, and an interactive reference atlas viewer. In addition, cross data set searches enable users to query multiple Allen Brain Atlas data sets simultaneously. All of the Allen Brain Atlas resources can be accessed through the Allen Brain Atlas data portal.


Assuntos
Anatomia Artística , Atlas como Assunto , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Bases de Dados Factuais , Adulto , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Gráficos por Computador , Perfilação da Expressão Gênica , Humanos , Hibridização In Situ , Internet , Camundongos , Primatas
16.
Neurobiol Dis ; 70: 190-203, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24969022

RESUMO

Recessively inherited loss-of-function mutations in the PTEN-induced putative kinase 1(Pink1), DJ-1 (Park7) and Parkin (Park2) genes are linked to familial cases of early-onset Parkinson's disease (PD). As part of its strategy to provide more tools for the research community, The Michael J. Fox Foundation for Parkinson's Research (MJFF) funded the generation of novel rat models with targeted disruption ofPink1, DJ-1 or Parkin genes and determined if the loss of these proteins would result in a progressive PD-like phenotype. Pathological, neurochemical and behavioral outcome measures were collected at 4, 6 and 8months of age in homozygous KO rats and compared to wild-type (WT) rats. Both Pink1 and DJ-1 KO rats showed progressive nigral neurodegeneration with about 50% dopaminergic cell loss observed at 8 months of age. ThePink1 KO and DJ-1 KO rats also showed a two to three fold increase in striatal dopamine and serotonin content at 8 months of age. Both Pink1 KO and DJ-1 KO rats exhibited significant motor deficits starting at 4months of age. However, Parkin KO rats displayed normal behaviors with no neurochemical or pathological changes. These results demonstrate that inactivation of the Pink1 or DJ-1 genes in the rat produces progressive neurodegeneration and early behavioral deficits, suggesting that these recessive genes may be essential for the survival of dopaminergic neurons in the substantia nigra (SN). These MJFF-generated novel rat models will assist the research community to elucidate the mechanisms by which these recessive genes produce PD pathology and potentially aid in therapeutic development.


Assuntos
Proteínas Associadas aos Microtúbulos/deficiência , Transtornos Parkinsonianos/fisiopatologia , Fenótipo , Proteínas Quinases/deficiência , Ubiquitina-Proteína Ligases/deficiência , Envelhecimento , Animais , Animais Geneticamente Modificados , Encéfalo/patologia , Encéfalo/fisiopatologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/fisiologia , Técnicas de Inativação de Genes , Genes Recessivos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Atividade Motora/fisiologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Proteína Desglicase DJ-1 , Proteínas Quinases/genética , Ratos Long-Evans , Serotonina/metabolismo , Ubiquitina-Proteína Ligases/genética
17.
Nat Rev Neurosci ; 10(11): 821-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19826436

RESUMO

The Allen Brain Atlas, a Web-based, genome-wide atlas of gene expression in the adult mouse brain, was an experiment on a massive scale. The development of the atlas faced a combination of great technical challenges and a non-traditional open research model, and it encountered many hurdles on the path to completion and community adoption. Having overcome these challenges, it is now a fundamental tool for neuroscientists worldwide and has set the stage for the creation of other similar open resources. Nevertheless, there are many untapped opportunities for exploration.


Assuntos
Atlas como Assunto , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Internet , Animais , Previsões , Perfilação da Expressão Gênica/tendências , Humanos , Internet/tendências , Camundongos
18.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38168182

RESUMO

Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making it challenging to identify precise areas and cell types of the brain that are more susceptible to aging than others. Here, we present a high-resolution single-cell RNA sequencing dataset containing ~1.2 million high-quality single-cell transcriptomic profiles of brain cells from young adult and aged mice across both sexes, including areas spanning the forebrain, midbrain, and hindbrain. We find age-associated gene expression signatures across nearly all 130+ neuronal and non-neuronal cell subclasses we identified. We detect the greatest gene expression changes in non-neuronal cell types, suggesting that different cell types in the brain vary in their susceptibility to aging. We identify specific, age-enriched clusters within specific glial, vascular, and immune cell types from both cortical and subcortical regions of the brain, and specific gene expression changes associated with cell senescence, inflammation, decrease in new myelination, and decreased vasculature integrity. We also identify genes with expression changes across multiple cell subclasses, pointing to certain mechanisms of aging that may occur across wide regions or broad cell types of the brain. Finally, we discover the greatest gene expression changes in cell types localized to the third ventricle of the hypothalamus, including tanycytes, ependymal cells, and Tbx3+ neurons found in the arcuate nucleus that are part of the neuronal circuits regulating food intake and energy homeostasis. These findings suggest that the area surrounding the third ventricle in the hypothalamus may be a hub for aging in the mouse brain. Overall, we reveal a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal aging that will serve as a foundation for the investigation of functional changes in the aging process and the interaction of aging and diseases.

19.
BMC Genomics ; 13: 214, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22651826

RESUMO

BACKGROUND: Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. RESULTS: By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3' UTR structures and correlated expression patterns. CONCLUSIONS: Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function.


Assuntos
Encéfalo/metabolismo , Biologia Computacional/métodos , Conformação de Ácido Nucleico , RNA/química , RNA/genética , Anatomia Artística , Animais , Atlas como Assunto , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Variação Genética , Hibridização In Situ , Camundongos , Anotação de Sequência Molecular , Ligação Proteica/genética , Sondas RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Termodinâmica , Regiões não Traduzidas/genética
20.
J Comp Neurol ; 530(1): 6-503, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525221

RESUMO

Increasing interest in studies of prenatal human brain development, particularly using new single-cell genomics and anatomical technologies to create cell atlases, creates a strong need for accurate and detailed anatomical reference atlases. In this study, we present two cellular-resolution digital anatomical atlases for prenatal human brain at postconceptional weeks (PCW) 15 and 21. Both atlases were annotated on sequential Nissl-stained sections covering brain-wide structures on the basis of combined analysis of cytoarchitecture, acetylcholinesterase staining, and an extensive marker gene expression dataset. This high information content dataset allowed reliable and accurate demarcation of developing cortical and subcortical structures and their subdivisions. Furthermore, using the anatomical atlases as a guide, spatial expression of 37 and 5 genes from the brains, respectively, at PCW 15 and 21 was annotated, illustrating reliable marker genes for many developing brain structures. Finally, the present study uncovered several novel developmental features, such as the lack of an outer subventricular zone in the hippocampal formation and entorhinal cortex, and the apparent extension of both cortical (excitatory) and subcortical (inhibitory) progenitors into the prenatal olfactory bulb. These comprehensive atlases provide useful tools for visualization, segmentation, targeting, imaging, and interpretation of brain structures of prenatal human brain, and for guiding and interpreting the next generation of cell census and connectome studies.


Assuntos
Atlas como Assunto , Encéfalo/crescimento & desenvolvimento , Córtex Entorrinal/crescimento & desenvolvimento , Hipocampo/crescimento & desenvolvimento , Animais , Feminino , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA