Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Scand J Med Sci Sports ; 33(6): 943-953, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36756770

RESUMO

The altitude differential of the specific mechanical energy, diff e mech , is used to evaluate skiing performance. It is defined as the negative differential between the skier's total specific mechanical energy ( e mech ) and the altitude of the skier's center of mass (COM). Till now, e mech was obtained upon a mass-point (MP) model of the skier's COM, which neither considered the segmental energies of their relative movements to the COM, nor their rotational kinetic energies. The aims of the study were therefore: (a) to examine the deviations in diff e mech between the MP and a more complex linked segment (LS) skier model consisting of 15 rigid bodies, which encountered the aforementioned defectiveness, (b) to compare the energy fluctuations of the two skier models, and (c) to investigate the influence of the gate setup on (a) and (b) in giant slalom. Three-dimensional whole-body kinematics of nine skiers was measured using a global navigation satellite system and an inertial motion capture system while skiing on a predefined course divided into a turny and open gate setup. Mechanical energies including their altitude differentials were calculated for the LS and MP models. There were no significant differences in e mech and diff e mech ski turn averages, as in individual data points, between both skier models for both analyzed gate setups. The energies additionally considered by the LS model presented a negligible part regardless of the gate setup. In conclusion, the MP skier model is sufficiently accurate for the evaluation of the skiing performance with diff e mech .


Assuntos
Esqui , Humanos , Fenômenos Biomecânicos , Movimento
2.
Sensors (Basel) ; 23(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631692

RESUMO

A three-dimensional motion capture system (MoCap) and the Garmin Running Dynamics Pod can be utilised to monitor a variety of dynamic parameters during running. The present investigation was designed to examine the validity of these two systems for determining ground contact times while running in place by comparing the values obtained with those provided by the bilateral force plate (gold standard). Eleven subjects completed three 20-s runs in place at self-selected rates, starting slowly, continuing at an intermediate pace, and finishing rapidly. The ground contact times obtained with both systems differed significantly from the gold standard at all three rates, as well as for all the rates combined (p < 0.001 in all cases), with the smallest mean bias at the fastest step rate for both (11.5 ± 14.4 ms for MoCap and -81.5 ± 18.4 ms for Garmin). This algorithm was developed for the determination of ground contact times during normal running and was adapted here for the assessment of running in place by the MoCap, which could be one explanation for its lack of validity. In conclusion, the wearables developed for monitoring normal running cannot be assumed to be suitable for determining ground contact times while running in place.


Assuntos
Captura de Movimento , Corrida , Humanos , Algoritmos , Placas Ósseas
3.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808391

RESUMO

A novel wearable smart patch can monitor various aspects of physical activity, including the dynamics of running, but like any new device developed for such applications, it must first be tested for validity. Here, we compare the step rate while running in place as measured by this smart patch to the corresponding values obtained utilizing ''gold standard'' MEMS accelerometers in combination with bilateral force plates equipped with HBM load cells, as well as the values provided by a three-dimensional motion capture system and the Garmin Dynamics Running Pod. The 15 healthy, physically active volunteers (age = 23 ± 3 years; body mass = 74 ± 17 kg, height = 176 ± 10 cm) completed three consecutive 20-s bouts of running in place, starting at low, followed by medium, and finally at high intensity, all self-chosen. Our major findings are that the rates of running in place provided by all four systems were valid, with the notable exception of the fast step rate as measured by the Garmin Running Pod. The lowest mean bias and LoA for these measurements at all rates were associated consistently with the smart patch.


Assuntos
Corrida , Adulto , Exercício Físico , Teste de Esforço , Humanos , Monitorização Fisiológica , Adulto Jovem
4.
Sensors (Basel) ; 21(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502822

RESUMO

Monitoring core body temperature (Tc) during training and competitions, especially in a hot environment, can help enhance an athlete's performance, as well as lower the risk for heat stroke. Accordingly, a noninvasive sensor that allows reliable monitoring of Tc would be highly beneficial in this context. One such novel non-invasive sensor was recently introduced onto the market (CORE, greenTEG, Rümlang, Switzerland), but, to our knowledge, a validation study of this device has not yet been reported. Therefore, the purpose of this study was to evaluate the validity and reliability of the CORE sensor. In Study I, 12 males were subjected to a low-to-moderate heat load by performing, on two separate occasions several days apart, two identical 60-min bouts of steady-state cycling in the laboratory at 19 °C and 30% relative humidity. In Study II, 13 males were subjected to moderate-to-high heat load by performing 90 min of cycling in the laboratory at 31 °C and 39% relative humidity. In both cases the core body temperatures indicated by the CORE sensor were compared to the corresponding values obtained using a rectal sensor (Trec). The first major finding was that the reliability of the CORE sensor is acceptable, since the mean bias between the two identical trials of exercise (0.02 °C) was not statistically significant. However, under both levels of heat load, the body temperature indicated by the CORE sensor did not agree well with Trec, with approximately 50% of all paired measurements differing by more than the predefined threshold for validity of ≤0.3 °C. In conclusion, the results obtained do not support the manufacturer's claim that the CORE sensor provides a valid measure of core body temperature.


Assuntos
Temperatura Corporal , Golpe de Calor , Exercício Físico , Temperatura Alta , Humanos , Masculino , Reprodutibilidade dos Testes
5.
Sensors (Basel) ; 20(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646033

RESUMO

Biomechanical studies of winter sports are challenging due to environmental conditions which cannot be mimicked in a laboratory. In this study, a methodological approach was developed merging 2D video recordings with sensor-based motion capture to investigate ski jump landings. A reference measurement was carried out in a laboratory, and subsequently, the method was exemplified in a field study by assessing the effect of a ski boot modification on landing kinematics. Landings of four expert skiers were filmed under field conditions in the jump plane, and full body kinematics were measured with an inertial motion unit (IMU) -based motion capture suit. This exemplary study revealed that the combination of video and IMU data is viable. However, only one skier was able to make use of the added boot flexibility, likely due to an extended training time with the modified boot. In this case, maximum knee flexion changed by 36° and maximum ankle flexion by 13°, whereas the other three skiers changed only marginally. The results confirm that 2D video merged with IMU data are suitable for jump analyses in winter sports, and that the modified boot will allow for alterations in landing technique provided that enough time for training is given.

6.
J Sports Sci ; 37(6): 647-655, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30317917

RESUMO

Here, we explored the relationship between incline and start strategy during alpine skiing. Eight FIS skiers performed starts on a flat (3°) and steep (21°) incline employing five different strategies. Their times, trajectories and velocities were monitored with a GNSS system and video. A significant interaction was observed between slope incline and start strategy with respect to the skier's exit velocity (p < 0.001, ƞ2p = 0.716), but not for the start section time (p = 0.732, ƞ2p = 0.037). On the almost flat incline, both section time (p = 0.022, ƞ2p = 0.438) and exit velocity (p < 0.001, ƞ2p = 0.786) were influenced significantly by start strategy, with four V2 skate-pushes being optimal. On the steep incline, neither section time nor exit velocity was affected significantly by start strategy, the fastest section time and exit velocity being attained with four and two V2 skate-pushes, respectively. In conclusion, these findings demonstrate that the start strategy exerts considerable impact on start performance on almost flat inclines, with strategies involving three or more V2 skate-pushes being optimal. In contrast, start performance on the steep incline was not influenced by strategy.


Assuntos
Desempenho Atlético , Esqui , Adolescente , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Gravação em Vídeo , Adulto Jovem
7.
J Sports Sci Med ; 17(1): 124-133, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29535586

RESUMO

Here, female and male elite cross-country (XC) skiers were compared on varying terrain during an official 10-km (women) and 15-km (men) Norwegian championship race. On the basis of race performance, 82 skiers were classified as fast (FS) (20 women, 20 men) or slower (SS) (21, 21) skiers. All were video recorded on flat (0°), intermediate (3.5°), uphill (7.1°) and steep uphill (11°) terrain during the race at a distance of 0.8, 1.2, 2.1 and 7.1 km from the start, respectively. All skiers employed exclusively double-poling (DP) on the flat section and, except for the male winner, exclusively diagonal stride (DIA) on the uphill sections. On the intermediate section, more men than women utilized DP and fewer DIA (p = 0.001), with no difference in kick double-poling (DPK). More FS than SS utilized DPK and fewer DIA (p = 0.001), with similar usage of DP. Males skied with faster and longer cycles but lower cycle rate compared with females (p < 0.001), with largest absolute sex differences on flat terrain (p < 0.001) and largest relative differences for cycle velocity and length on intermediate and uphill terrain. External power output rose with increasing incline, being higher for men and FS (p < 0.001). Cycle velocity on flat terrain was the best predictor of mean race velocity for the men, while cycle velocity on steep uphill was the best predictor for the women (both p < 0.001). In conclusion, incline, sex and level of performance influenced cycle characteristics and power output. Greatest absolute sex gap was on flat terrain, whereas the relative difference was greatest on intermediate and steep uphill terrain. We recommend usage of more DP and/or DPK, and less DIA and fewer transitions between techniques on intermediate terrain. Predictors of race performance are sex specific with greatest potential for enhancing performance on flat terrain for men and on steep uphill terrain for women.

8.
J Sports Sci Med ; 14(3): 606-19, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26336348

RESUMO

Recently alpine skis with a wider waist width, which medially shifts the contact between the ski edge and the snow while turning, have appeared on the market. The aim of this study was to determine the knee joint kinematics during turning while using skis of different waist widths (65mm, 88mm, 110mm). Six highly skilled skiers performed ten turns on a predefined course (similar to a giant slalom course). The relation of femur and tibia in the sagital, frontal and coronal planes was captured by using an inertial motion capture suit, and Global Navigation Satellite System was used to determine the skiers' trajectories. With respect of the outer ski the knee joint flexion, internal rotation and abduction significantly decreased with the increase of the ski waist width for the greatest part of the ski turn. The greatest abduction with the narrow ski and the greatest external rotation (lowest internal rotation) with the wide ski are probably the reflection of two different strategies of coping the biomechanical requirements in the ski turn. These changes in knee kinematics were most probably due to an active adaptation of the skier to the changed biomechanical conditions using wider skis. The results indicated that using skis with large waist widths on hard, frozen surfaces could bring the knee joint unfavorably closer to the end of the range of motion in transversal and frontal planes as well as potentially increasing the risk of degenerative knee injuries. Key pointsThe change in the skis' waist width caused a change in the knee joint movement strategies, which had a tendency to adapt the skier to different biomechanical conditions.The use of wider skis or, in particular, skis with a large waist width, on a hard or frozen surface, could unfavourably bring the knee joint closer to the end of range of motion in transversal and frontal planes as well as may potentially increase the risk of degenerative knee injuries.The overall results of the abduction and internal rotation in respect to turn radii and ground reaction forces indicated that the knee joint movements are likely one of the key points in alpine skiing techniques. However, the skiing equipment used can still significantly influence the movement strategy.

9.
J Sports Sci Med ; 14(4): 841-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26664282

RESUMO

The purpose of the study was to analyse the flexion angles of the ski boot, ankle and knee joints of an above-knee prosthesis and to compare them with an intact leg and a control group of skiers. One subject with an above-knee amputation of the right leg and eight healthy subjects simulated the movement of a skiing turn by performing two-leg squats in laboratory conditions. By adding additional loads in proportion to body weight (BW; +1/3 BW, +2/3 BW, +3/3 BW), various skiing regimes were simulated. Change of Flexion Angle (CoFA) and Range of Motion (RoM) in the ski boot, ankle and knee joints were calculated and compared. An average RoM in the skiing boot on the side of prosthesis (4.4 ± 1.1°) was significantly lower compared to an intact leg (5.9 ± 1.8°) and the control group (6.5 ± 2.3°). In the ankle joint, the average RoM was determined to be 13.2±2.9° in the prosthesis, 12.7 ± 2.8° in an intact leg and 14.8±3.6 in the control group. However, the RoM of the knee joint in the prosthesis (42.2 ± 4.2°) was significantly larger than that of the intact leg (34.7 ± 4.4°). The average RoM of the knee joint in the control group was 47.8 ± 5.4°. The influences of additional loads on the kinematics of the lower extremities were different on the side of the prosthesis and on the intact leg. In contrast, additional loads did not produce any significant differences in the control group. Although different CoFAs in the ski boot, ankle and knee joints were used, an above-knee prosthesis with a built-in multi-axis prosthetic knee enables comparable leg kinematics in simulated alpine skiing. Key pointsThe RoM in the ski boot on the side of the prosthetic leg was smaller than the RoM of the intact leg and the control group of healthy subjects.The RoM in the ankle joint of prosthetic leg was comparable to that of the intact leg and the control group of healthy subjects.The RoM in the prosthetic knee joint was greater than the RoM in the knee joint of the intact leg and smaller than that of the control group.The total knee flexions in the laboratory measurements were comparable with field measurements.Additional load affects the RoM of the ski boot, ankle and knee joints for the amputated skier in both legs. No significant influence from the additional load was found on the RoM in the control group of healthy subjects.The above-knee prosthesis with a multiple-axis prosthetic knee reproduces the alpine skiing kinematics of an intact leg.

11.
Sensors (Basel) ; 14(12): 23490-23508, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25494349

RESUMO

Global Navigation Satellite Systems (GNSS) are, in addition to being most widely used vehicle navigation method, becoming popular in sport-related tests. There is a lack of knowledge regarding tracking speed using GNSS, therefore the aims of this study were to examine under dynamic conditions: (1) how accurate technologically different GNSS measure speed and (2) how large is latency in speed measurements in real time applications. Five GNSSs were tested. They were fixed to a car's roof-rack: a  smart phone, a wrist watch, a handheld device, a professional system for testing vehicles and a high-end Real Time Kinematics (RTK) GNSS. The speed data were recorded and analyzed during rapid acceleration and deceleration as well as at steady speed. The study produced four main findings. Higher frequency and high quality GNSS receivers track speed at least at comparable accuracy to a vehicle speedometer. All GNSS systems measured maximum speed and movement at a constant speed well. Acceleration and deceleration have different level of error at different speeds. Low cost GNSS receivers operating at 1 Hz sampling rate had high latency (up to 2.16 s) and are not appropriate for tracking speed in real time, especially during dynamic movements.

12.
Sensors (Basel) ; 14(10): 18898-914, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25313492

RESUMO

High precision Global Navigation Satellite System (GNSS) measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier's neck. A key issue is how to estimate other more relevant parameters of the skier's body, like the center of mass (COM) and ski trajectories. Previously, these parameters were estimated by modeling the skier's body with an inverted-pendulum model that oversimplified the skier's body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier's body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing.


Assuntos
Inteligência Artificial , Postura , Esqui/fisiologia , Fenômenos Biomecânicos , Humanos , Redes Neurais de Computação
13.
Physiol Rep ; 12(13): e16034, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949844

RESUMO

This study compared the joint kinematics between the front squat (FS) conducted in the upright (natural gravity) position and in the supine position on a short arm human centrifuge (SAHC). Male participants (N = 12) with no prior experience exercising on a centrifuge completed a FS in the upright position before (PRE) and after (POST) a FS exercise conducted on the SAHC while exposed to artificial gravity (AG). Participants completed, in randomized order, three sets of six repetitions with a load equal to body weight or 1.25 × body weight for upright squats, and 1 g and 1.25 g at the center of gravity (COG) for AG. During the terrestrial squats, the load was applied with a barbell. Knee (left/right) and hip (left/right) flexion angles were recorded with a set of inertial measurement units. AG decreased the maximum flexion angle (MAX) of knees and hips as well as the range of motion (ROM), both at 1 and 1.25 g. Minor adaptation was observed between the first and the last repetition performed in AG. AG affects the ability to FS in naïve participants by reducing MAX, MIN and ROM of the knees and hip.


Assuntos
Centrifugação , Exercício Físico , Articulação do Joelho , Amplitude de Movimento Articular , Humanos , Masculino , Amplitude de Movimento Articular/fisiologia , Fenômenos Biomecânicos , Adulto , Articulação do Joelho/fisiologia , Exercício Físico/fisiologia , Adulto Jovem , Articulação do Quadril/fisiologia , Postura/fisiologia , Gravidade Alterada
14.
Front Physiol ; 14: 1205347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546541

RESUMO

Objective: Alpine skiing requires complex motor skills and fine adjustments to maintain balance in dynamic and challenging conditions. This study aimed to understand whether the balance ability in unspecific (UST) and sport-specific (SST) tasks could depend on the skiers' ranking level. The balance performance of the dominant and non-dominant limbs in the SST was also investigated. Methods: Twenty-five skiers (14.96 ± 1.61 yrs; 1.69 ± 0.69 m; 59.9 ± 9.52 kg) were divided into high-ranking (position < 50) and low-ranking (position > 50) groups. Subjects performed three balance conditions: static (ST), dynamic UST, and dynamic SST. Subjects stood on an unstable board over a force platform during UST. During SST, subjects wore ski boots, grasped ski poles, and each foot was clipped to an unstable board over two force plates. From the center-of-pressure (CoP) trajectory the area of the 95th percentile ellipse and the CoP mean velocity were calculated. Angular displacements were recorded by a 12-camera system, to calculate the full balance (FB), fine (FiB), and gross (GB) balance in UST and SST. Results: Balance control was higher (p < 0.01) in high-ranking than low-ranking skiers only in the SST. Kinematic parameters (i.e., FB, FiB, and GB) showed a higher (p < 0.001) balance performance in SST than UST independently from the group. Dominant and non-dominant limbs motion was similar (Pearson correlation, r = 0.97) in SST independently from the skiers' ranking. Conclusion: High-ranking skiers showed better balance control and performance than low-ranking skiers only when the task was sport-specific. Therefore, we suggest testing balance under sport-specific conditions to discriminate the youth skiers' abilities.

16.
J Hum Kinet ; 78: 29-39, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34025861

RESUMO

The aim of this study was to examine chosen kinematic variables (duration of the shot, position of the centre of mass, position of the shooting hand, rotation of the shoulder axis) of successful shots and to describe differences in movement patterns in elite basketball players while increasing the distance from the basket during a jump shot. Our participants were three elite shooting guards who were all Slovenian national team and Euroleague players. They were shooting from three different distances (3.75 m, 5.25 m, and 6.75 m); analysis included 90 successful shots. The kinematics of the entire body was analysed using the inertial motion capture suit. The main interest was on the transverse plane (direction Y), focusing on rotational movements and movements to the left and right. The results showed that the rotation of the shoulder axis in the transverse plane, with all three participants, was greatest (p < .05) from the longest distance. Despite that graphs of individual players differed, deviation to the left was most significant while shooting from the largest distance for all participants. Also the landing from the jump shot was on the left according to the origin. For example, the average deviation to the left for player no. 2 was 11.9 ± 3.6 cm (the shortest distance), 12.6 ± 4.7 cm (the middle distance), and 23.3 ± 5.1 cm (the longest distance). Distance from the basket influenced the kinematics of the shot, especially from the longest distance. Along with the already well-known changes in the sagittal plane (direction X and Z), this research provides information on changes in the transverse plane, which are also very important, especially while shooting from longer distances.

17.
Front Physiol ; 12: 737249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744777

RESUMO

Ski mountaineering is a rapidly growing winter sport that involves alternately climbing and descending slopes and various racing formats that differ in length and total vertical gain, as well as their distribution of downhill and uphill sections. In recent years, both participation in and media coverage of this sport have increased dramatically, contributing, at least in part, to its inclusion in the 2026 Winter Olympics in Milano-Cortina. Here, our aim has been to briefly describe the major characteristics of ski mountaineering, its physiological and biomechanical demands, equipment, and training/testing, as well as to provide some future perspectives. Despite its popularity, research on this discipline is scarce, but some general characteristics are already emerging. Pronounced aerobic capacity is an important requirement for success, as demonstrated by positive correlations between racing time and maximal oxygen uptake and oxygen uptake at the second ventilatory threshold. Moreover, due to the considerable mechanical work against gravity on demanding uphill terrain, the combined weight of the athlete and equipment is inversely correlated with performance, prompting the development of both lighter and better equipment in recent decades. In ski mountaineering, velocity uphill is achieved primarily by more frequent (rather than longer) strides due primarily to high resistive forces. The use of wearable technologies, designed specifically for analysis in the field (including at elevated altitudes and cold temperatures) and more extensive collaboration between researchers, industrial actors, and coaches/athletes, could further improve the development of this sport.

18.
Front Physiol ; 12: 577698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859567

RESUMO

The ground reaction forces (GRF) associated with competitive alpine skiing, which are relatively large, might be asymmetric during left and right turns due to asymmetries in the strength of the legs and torso and the present investigation was designed to evaluate this possibility. While skiing a symmetrical, 20-gate slalom course, the asymmetries of 9 elite alpine skiers were calculated on the basis of measurements provided by inertial motion units (IMU), a Global Navigation Satellite System and pressure insoles. In addition, specialized dynamometers were utilized to assess potential asymmetry in the strength of their legs and torso in the laboratory. In total, seven variables related to GRF were assessed on-snow and eight related to strength of the legs and torso in the laboratory. The asymmetries in these parameters between left and right turns on snow were expressed in terms of the symmetry (SI) and Jaccard indices (JI), while the asymmetries between the left and right sides of the body in the case of the laboratory measurements were expressed as the SIs. The three hypotheses to be tested were examined using multivariable regression models. Our findings resulted in rejection of all three hypotheses: The asymmetries in total GRF (H1), as well as in the GRF acting on the inside and outside legs (H2) and on the rear- and forefeet GRF (H3) during left and right turns were not associated with asymmetries in parameters related to muscular strength. Nevertheless, this group of elite slalom skiers exhibited significant asymmetry between their right and left legs with respect to MVC during ankle flexion (0.53 ± 0.06 versus 0.60 ± 0.07 Nm/kg, respectively) and hip extension (2.68 ± 0.39 versus 2.17 ± 0.26 Nm/kg), as well as with respect to the GRFs on the inside leg while skiing (66.8 ± 7.39 versus 76.0 ± 10.0 %BW). As indicated by the JI values, there were also large asymmetries related to GRF as measured by pressure insoles (range: 42.7-56.0%). In conclusion, inter-limb asymmetries in GRFs during elite alpine skiing are not related to corresponding asymmetries in muscular strength. Although our elite athletes exhibited relatively small inter-limb asymmetries in strength, their asymmetries in GRF on-snow were relatively large.

19.
Eur J Appl Physiol ; 110(3): 585-95, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20571822

RESUMO

The purpose was to examine skiing velocities, gear choice (G2-7) and cycle rates during a skating sprint time trial (STT) and their relationships to performance, as well as to examine relationships between aerobic power, body composition and maximal skiing velocity versus STT performance. Nine male elite cross-country skiers performed three tests on snow: (1) Maximum velocity test (V (max)) performed using G3 skating, (2) V (max) test performed using double poling (DP) technique and (3) a STT over 1,425 m. Additional measurements of VO(2max) during roller skiing and body composition using iDXA were made. Differential global navigation satellite system data were used for position and velocity and synchronized with video during STT. The STT encompassed a large velocity range (2.9-12.9 m s(-1)) and multiple transitions (21-34) between skiing gears. Skiing velocity in the uphill sections was related to gear selection between G2 and G3. STT performance was most strongly correlated to uphill time (r = 0.92, P < 0.05), the percentage use of G2 (r = -0.72, P < 0.05), and DP V (max) (r = -0.71, P < 0.05). The velocity decrease in the uphills from lap 1 to lap 2 was correlated with VO(2max) (r = -0.78, P < 0.05). V (max) in DP and G3 were related to percent of racing time using G3. In conclusion, the sprint skiing performance was mainly related to uphill performance, greater use of the G3 technique, and higher DP and G3 maximum velocities. Additionally, VO(2max) was related to the ability to maintain racing velocity in the uphills and lean body mass was related to starting velocity and DP maximal speed.


Assuntos
Desempenho Atlético/fisiologia , Comunicações Via Satélite , Esqui/fisiologia , Medicina Esportiva/instrumentação , Adulto , Fenômenos Biomecânicos , Pesos e Medidas Corporais , Humanos , Locomoção/fisiologia , Masculino , Consumo de Oxigênio/fisiologia , Gravação em Vídeo , Adulto Jovem
20.
J Sports Sci ; 28(7): 759-69, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20473823

RESUMO

To date, camcorders have been the device of choice for 3D kinematic measurement in human locomotion, in spite of their limitations. This study examines a novel system involving a GNSS RTK that returns a reference trajectory through the use of a suit, imbedded with inertial sensors, to reveal subject segment motion. The aims were: (1) to validate the system's precision and (2) to measure an entire alpine ski race and retrieve the results shortly after measuring. For that purpose, four separate experiments were performed: (1) forced pendulum, (2) walking, (3) gate positions, and (4) skiing experiments. Segment movement validity was found to be dependent on the frequency of motion, with high accuracy (0.8 degrees , s = 0.6 degrees ) for 10 s, which equals approximately 10 slalom turns, while accuracy decreased slightly (2.1 degrees , 3.3 degrees , and 4.2 degrees for 0.5, 1, and 2 Hz oscillations, respectively) during 35 s of data collection. The motion capture suit's orientation inaccuracy was mostly due to geomagnetic secular variation. The system exhibited high validity regarding the reference trajectory (0.008 m, s = 0.0044) throughout an entire ski race. The system is capable of measuring an entire ski course with less manpower and therefore lower cost compared with camcorder-based techniques.


Assuntos
Locomoção , Comunicações Via Satélite , Esqui/fisiologia , Gravação em Vídeo/instrumentação , Adolescente , Fenômenos Biomecânicos , Sistemas Computacionais , Humanos , Masculino , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA