Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 538(7623): 123-126, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27626371

RESUMO

Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the mitochondrial respiratory chain and is composed of 45 subunits in humans, making it one of the largest known multi-subunit membrane protein complexes. Complex I exists in supercomplex forms with respiratory chain complexes III and IV, which are together required for the generation of a transmembrane proton gradient used for the synthesis of ATP. Complex I is also a major source of damaging reactive oxygen species and its dysfunction is associated with mitochondrial disease, Parkinson's disease and ageing. Bacterial and human complex I share 14 core subunits that are essential for enzymatic function; however, the role and necessity of the remaining 31 human accessory subunits is unclear. The incorporation of accessory subunits into the complex increases the cellular energetic cost and has necessitated the involvement of numerous assembly factors for complex I biogenesis. Here we use gene editing to generate human knockout cell lines for each accessory subunit. We show that 25 subunits are strictly required for assembly of a functional complex and 1 subunit is essential for cell viability. Quantitative proteomic analysis of cell lines revealed that loss of each subunit affects the stability of other subunits residing in the same structural module. Analysis of proteomic changes after the loss of specific modules revealed that ATP5SL and DMAC1 are required for assembly of the distal portion of the complex I membrane arm. Our results demonstrate the broad importance of accessory subunits in the structure and function of human complex I. Coupling gene-editing technology with proteomics represents a powerful tool for dissecting large multi-subunit complexes and enables the study of complex dysfunction at a cellular level.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Subunidades Proteicas/metabolismo , Linhagem Celular , Respiração Celular , Sobrevivência Celular/genética , Complexo I de Transporte de Elétrons/genética , Edição de Genes , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Proteômica
2.
Hum Mol Genet ; 24(19): 5404-15, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26160915

RESUMO

Biogenesis of complex IV of the mitochondrial respiratory chain requires assembly factors for subunit maturation, co-factor attachment and stabilization of intermediate assemblies. A pathogenic mutation in COA6, leading to substitution of a conserved tryptophan for a cysteine residue, results in a loss of complex IV activity and cardiomyopathy. Here, we demonstrate that the complex IV defect correlates with a severe loss in complex IV assembly in patient heart but not fibroblasts. Complete loss of COA6 activity using gene editing in HEK293T cells resulted in a profound growth defect due to complex IV deficiency, caused by impaired biogenesis of the copper-bound mitochondrial DNA-encoded subunit COX2 and subsequent accumulation of complex IV assembly intermediates. We show that the pathogenic mutation in COA6 does not affect its import into mitochondria but impairs its maturation and stability. Furthermore, we show that COA6 has the capacity to bind copper and can associate with newly translated COX2 and the mitochondrial copper chaperone SCO1. Our data reveal that COA6 is intricately involved in the copper-dependent biogenesis of COX2.


Assuntos
Cardiomiopatias/genética , Proteínas de Transporte/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Transporte/metabolismo , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/citologia , Fibroblastos/enzimologia , Células HEK293 , Humanos , Lactente , Masculino , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares
3.
Nat Cell Biol ; 26(1): 138-152, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38216737

RESUMO

Inheritance of a BRCA2 pathogenic variant conveys a substantial life-time risk of breast cancer. Identification of the cell(s)-of-origin of BRCA2-mutant breast cancer and targetable perturbations that contribute to transformation remains an unmet need for these individuals who frequently undergo prophylactic mastectomy. Using preneoplastic specimens from age-matched, premenopausal females, here we show broad dysregulation across the luminal compartment in BRCA2mut/+ tissue, including expansion of aberrant ERBB3lo luminal progenitor and mature cells, and the presence of atypical oestrogen receptor (ER)-positive lesions. Transcriptional profiling and functional assays revealed perturbed proteostasis and translation in ERBB3lo progenitors in BRCA2mut/+ breast tissue, independent of ageing. Similar molecular perturbations marked tumours bearing BRCA2-truncating mutations. ERBB3lo progenitors could generate both ER+ and ER- cells, potentially serving as cells-of-origin for ER-positive or triple-negative cancers. Short-term treatment with an mTORC1 inhibitor substantially curtailed tumorigenesis in a preclinical model of BRCA2-deficient breast cancer, thus uncovering a potential prevention strategy for BRCA2 mutation carriers.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/prevenção & controle , Mastectomia , Mutação , Proteína BRCA2/genética , Carcinogênese , Transformação Celular Neoplásica , Proteína BRCA1/genética
4.
Cell Genom ; 3(11): 100424, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020976

RESUMO

Although lineage-specific genes have been identified in the mammary gland, little is known about the contribution of the 3D genome organization to gene regulation in the epithelium. Here, we describe the chromatin landscape of the three major epithelial subsets through integration of long- and short-range chromatin interactions, accessibility, histone modifications, and gene expression. While basal genes display exquisite lineage specificity via distal enhancers, luminal-specific genes show widespread promoter priming in basal cells. Cell specificity in luminal progenitors is largely mediated through extensive chromatin interactions with super-enhancers in gene-body regions in addition to interactions with polycomb silencer elements. Moreover, lineage-specific transcription factors appear to be controlled through cell-specific chromatin interactivity. Finally, chromatin accessibility rather than interactivity emerged as a defining feature of the activation of quiescent basal stem cells. This work provides a comprehensive resource for understanding the role of higher-order chromatin interactions in cell-fate specification and differentiation in the adult mouse mammary gland.

5.
Cell Mol Immunol ; 20(1): 65-79, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36471114

RESUMO

The cytokine granulocyte-macrophage-colony stimulating factor (GM-CSF) possesses the capacity to differentiate monocytes into macrophages (MØs) with opposing functions, namely, proinflammatory M1-like MØs and immunosuppressive M2-like MØs. Despite the importance of these opposing biological outcomes, the intrinsic mechanism that regulates the functional polarization of MØs under GM-CSF signaling remains elusive. Here, we showed that GM-CSF-induced MØ polarization resulted in the expression of cytokine-inducible SH2-containing protein (CIS) and that CIS deficiency skewed the differentiation of monocytes toward immunosuppressive M2-like MØs. CIS deficiency resulted in hyperactivation of the JAK-STAT5 signaling pathway, consequently promoting downregulation of the transcription factor Interferon Regulatory Factor 8 (IRF8). Loss- and gain-of-function approaches highlighted IRF8 as a critical regulator of the M1-like polarization program. In vivo, CIS deficiency induced the differentiation of M2-like macrophages, which promoted strong Th2 immune responses characterized by the development of severe experimental asthma. Collectively, our results reveal a CIS-modulated mechanism that clarifies the opposing actions of GM-CSF in MØ differentiation and uncovers the role of GM-CSF in controlling allergic inflammation.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Macrófagos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Monócitos/metabolismo , Citocinas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Diferenciação Celular
6.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37557181

RESUMO

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Histonas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
7.
Front Cell Dev Biol ; 10: 786268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300415

RESUMO

Mitochondria are complex organelles containing 13 proteins encoded by mitochondrial DNA and over 1,000 proteins encoded on nuclear DNA. Many mitochondrial proteins are associated with the inner or outer mitochondrial membranes, either peripherally or as integral membrane proteins, while others reside in either of the two soluble mitochondrial compartments, the mitochondrial matrix and the intermembrane space. The biogenesis of the five complexes of the oxidative phosphorylation system are exemplars of this complexity. These large multi-subunit complexes are comprised of more than 80 proteins with both membrane integral and peripheral associations and require soluble, membrane integral and peripherally associated assembly factor proteins for their biogenesis. Mutations causing human mitochondrial disease can lead to defective complex assembly due to the loss or altered function of the affected protein and subsequent destabilization of its interactors. Here we couple sodium carbonate extraction with quantitative mass spectrometry (SCE-MS) to track changes in the membrane association of the mitochondrial proteome across multiple human knockout cell lines. In addition to identifying the membrane association status of over 840 human mitochondrial proteins, we show how SCE-MS can be used to understand the impacts of defective complex assembly on protein solubility, giving insights into how specific subunits and sub-complexes become destabilized.

8.
Mol Oncol ; 16(5): 1119-1131, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35000262

RESUMO

Breast cancer is a heterogeneous disease that comprises multiple histological and molecular subtypes. To gain insight into mutations that drive breast tumorigenesis, we describe a pipeline for the identification and validation of tumor suppressor genes. Based on an in vivo genome-wide CRISPR/Cas9 screen in Trp53+/- heterozygous mice, we identified tumor suppressor genes that included the scaffold protein Axin1, the protein kinase A regulatory subunit gene Prkar1a, as well as the proof-of-concept genes Pten, Nf1, and Trp53 itself. Ex vivo editing of primary mammary epithelial organoids was performed to further interrogate the roles of Axin1 and Prkar1a. Increased proliferation and profound changes in mammary organoid morphology were observed for Axin1/Trp53 and Prkar1a/Trp53 double mutants compared to Pten/Trp53 double mutants. Furthermore, direct in vivo genome editing via intraductal injection of lentiviruses engineered to express dual short-guide RNAs revealed that mutagenesis of Trp53 and either Prkar1a, Axin1, or Pten markedly accelerated tumor development compared to Trp53-only mutants. This proof-of-principle study highlights the application of in vivo CRISPR/Cas9 editing for uncovering cooperativity between defects in tumor suppressor genes that elicit mammary tumorigenesis.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Transformação Celular Neoplásica/genética , Genes Supressores de Tumor , Humanos , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Nat Commun ; 12(1): 6920, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836954

RESUMO

Bone marrow is a preferred metastatic site for multiple solid tumours and is associated with poor prognosis and significant morbidity. Accumulating evidence indicates that cancer cells colonise specialised niches within the bone marrow to support their long-term propagation, but the precise location and mechanisms that mediate niche interactions are unknown. Using breast cancer as a model of solid tumour metastasis to the bone marrow, we applied large-scale quantitative three-dimensional imaging to characterise temporal changes in the bone marrow microenvironment during disease progression. We show that mouse mammary tumour cells preferentially home to a pre-existing metaphyseal domain enriched for type H vessels. Metastatic lesion outgrowth rapidly remodelled the local vasculature through extensive sprouting to establish a tumour-supportive microenvironment. The evolution of this tumour microenvironment reflects direct remodelling of the vascular endothelium through tumour-derived granulocyte-colony stimulating factor (G-CSF) in a hematopoietic cell-independent manner. Therapeutic targeting of the metastatic niche by blocking G-CSF receptor inhibited pathological blood vessel remodelling and reduced bone metastasis burden. These findings elucidate a mechanism of 'host' microenvironment hijacking by mammary tumour cells to subvert the local microvasculature to form a specialised, pro-tumorigenic niche.


Assuntos
Medula Óssea , Neoplasias Ósseas , Neoplasias da Mama , Neoplasias Mamárias Animais , Metástase Neoplásica , Microambiente Tumoral , Animais , Medula Óssea/diagnóstico por imagem , Medula Óssea/cirurgia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/cirurgia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/cirurgia , Neoplasias da Mama/cirurgia , Progressão da Doença , Fator Estimulador de Colônias de Granulócitos , Humanos , Imageamento Tridimensional , Camundongos , Metástase Neoplásica/diagnóstico por imagem , Metástase Neoplásica/terapia , Segunda Neoplasia Primária , Receptores de Fator Estimulador de Colônias
10.
J Leukoc Biol ; 108(4): 1397-1408, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33463756

RESUMO

The ability to genetically modify CD8 T cells using viral gene delivery has facilitated the development of next generation of cancer immunotherapies such as chimeric Ag receptor (CAR) T cells engineered to specifically kill tumor cells. Development of immunotherapies targeting NK cells have stalled in part by their resistance to traditional viral gene delivery systems. Here, an efficient approach is described to genetically edit human NK cells by electroporation and CRISPR-Cas9 ribonucleoprotein (RNP) complexes. Electroporation pulse codes and buffer optimization for protein uptake by human NK cells and viability, and the efficiency of this approach over other methods are detailed. To highlight the transformative step this technique will have for NK cell immunotherapy drug discovery, NCR1 and CISH are deleted in primary human NK cells and murine findings are validated on their key roles in regulating NK cell antitumor function.


Assuntos
Sistemas CRISPR-Cas , Descoberta de Drogas , Eletroporação , Células Matadoras Naturais/imunologia , Animais , Humanos , Células Matadoras Naturais/citologia , Camundongos
11.
Clin Cancer Res ; 26(15): 4120-4134, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32245900

RESUMO

PURPOSE: Although cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors significantly extend tumor response in patients with metastatic estrogen receptor-positive (ER+) breast cancer, relapse is almost inevitable. This may, in part, reflect the failure of CDK4/6 inhibitors to induce apoptotic cell death. We therefore evaluated combination therapy with ABT-199 (venetoclax), a potent and selective BCL2 inhibitor. EXPERIMENTAL DESIGN: BCL2 family member expression was assessed following treatment with endocrine therapy and the CDK4/6 inhibitor palbociclib. Functional assays were used to determine the impact of adding ABT-199 to fulvestrant and palbociclib in ER+ breast cancer cell lines, patient-derived organoid (PDO), and patient-derived xenograft (PDX) models. A syngeneic ER+ mouse mammary tumor model was used to study the effect of combination therapy on the immune system. RESULTS: Triple therapy was well tolerated and produced a superior and more durable tumor response compared with single or doublet therapy. This was associated with marked apoptosis, including of senescent cells, indicative of senolysis. Unexpectedly, ABT-199 resulted in Rb dephosphorylation and reduced G1-S cyclins, most notably at high doses, thereby intensifying the fulvestrant/palbociclib-induced cell-cycle arrest. Interestingly, a CRISPR/Cas9 screen suggested that ABT-199 could mitigate loss of Rb (and potentially other mechanisms of acquired resistance) to palbociclib. ABT-199 did not abrogate the favorable immunomodulatory effects of palbociclib in a syngeneic ER+ mammary tumor model and extended tumor response when combined with anti-PD1 therapy. CONCLUSIONS: This study illustrates the potential for targeting BCL2 in combination with CDK4/6 inhibitors and supports investigation of combination therapy in ER+ breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/terapia , Terapia Neoadjuvante/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Adulto , Idoso , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Fulvestranto/farmacologia , Fulvestranto/uso terapêutico , Humanos , Mastectomia , Camundongos , Pessoa de Meia-Idade , Organoides , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Receptores de Estrogênio/análise , Receptores de Estrogênio/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Immunol ; 115: 56-63, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30144957

RESUMO

NK cells are cytotoxic lymphocytes with a key role in limiting tumour metastases. In mice, the NK cell lineage continually expresses high levels of the Inhibitor of DNA-binding 2 (Id2) protein and loss of Id2 is incongruous with their survival due to aberrant E-protein target gene activity. Using novel Id2 and E-protein antibodies that detect both mouse and human proteins, we have extensively characterised Id2 and E-protein expression in murine and human NK cells. We detected clear expression of E2 A and HEB, and to a lesser extent E2-2 in murine NK cells. In contrast HEB appears to be the major E-protein expressed in human NK cells, with minor E2-2 expression and surprisingly, no E2 A detected in primary NK cells nor human NK cell lines. These novel antibodies are also functional in immunofluorescence and immunoprecipitation. Mass spectrometry analysis of Id2 immuno-precipitated from murine NK cells revealed a number of novel associated proteins including several members of the SWI/SNF-related matrix-associated actin-dependent regulator chromatin (SMARC) and Mediator complex (MED) families. Taken together, these data highlight the utility of novel Id2 and E-protein antibodies and caution against mouse models for understanding Id2/E-protein biology in NK cells given their clearly disparate expression patternbetween species.


Assuntos
Anticorpos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Proteína 2 Inibidora de Diferenciação/imunologia , Células Matadoras Naturais/imunologia , Fator de Transcrição 4/imunologia , Animais , Linhagem Celular , Linhagem da Célula/imunologia , Cromatina/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA