Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295323

RESUMO

Synaptic transmission mediated by GABAA receptors (GABAARs) in adult, principal striatal spiny projection neurons (SPNs) can suppress ongoing spiking, but its effect on synaptic integration at subthreshold membrane potentials is less well characterized, particularly those near the resting down-state. To fill this gap, a combination of molecular, optogenetic, optical, and electrophysiological approaches were used to study SPNs in mouse ex vivo brain slices, and computational tools were used to model somatodendritic synaptic integration. In perforated patch recordings, activation of GABAARs, either by uncaging of GABA or by optogenetic stimulation of GABAergic synapses, evoked currents with a reversal potential near -60 mV in both juvenile and adult SPNs. Transcriptomic analysis and pharmacological work suggested that this relatively positive GABAAR reversal potential was not attributable to NKCC1 expression, but rather to HCO3- permeability. Regardless, from down-state potentials, optogenetic activation of dendritic GABAergic synapses depolarized SPNs. This GABAAR-mediated depolarization summed with trailing ionotropic glutamate receptor (iGluR) stimulation, promoting dendritic spikes and increasing somatic depolarization. Simulations revealed that a diffuse dendritic GABAergic input to SPNs effectively enhanced the response to dendritic iGluR signaling and promoted dendritic spikes. Taken together, our results demonstrate that GABAARs can work in concert with iGluRs to excite adult SPNs when they are in the resting down-state, suggesting that their inhibitory role is limited to brief periods near spike threshold. This state-dependence calls for a reformulation for the role of intrastriatal GABAergic circuits.


Assuntos
Interneurônios , Receptores de GABA-A , Camundongos , Animais , Corpo Estriado/fisiologia , Neostriado , Transmissão Sináptica/fisiologia , Neurônios GABAérgicos/fisiologia
2.
Nature ; 599(7886): 650-656, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732887

RESUMO

Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease1. Yet, whether this change contributes to Parkinson's disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism-which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson's disease paradigm3,4.


Assuntos
Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Morte Celular , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Progressão da Doença , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Camundongos , Destreza Motora/efeitos dos fármacos , NADH Desidrogenase/deficiência , NADH Desidrogenase/genética , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Fenótipo , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
3.
Nature ; 586(7829): 417-423, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32999463

RESUMO

Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.


Assuntos
Retroalimentação Fisiológica , Microglia/fisiologia , Inibição Neural , Neurônios/fisiologia , 5'-Nucleotidase/metabolismo , Potenciais de Ação , Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Cálcio/metabolismo , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Inibição Neural/genética , Receptor A1 de Adenosina/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Fatores de Tempo
4.
Mol Psychiatry ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486049

RESUMO

Combinatorial expression of postsynaptic proteins underlies synapse diversity within and between neuron types. Thus, characterization of neuron-type-specific postsynaptic proteomes is key to obtaining a deeper understanding of discrete synaptic properties and how selective dysfunction manifests in synaptopathies. To overcome the limitations associated with bulk measures of synaptic protein abundance, we developed a biotin proximity protein tagging probe to characterize neuron-type-specific postsynaptic proteomes in vivo. We found Shank3 protein isoforms are differentially expressed by direct and indirect pathway spiny projection neurons (dSPNs and iSPNs). Investigation of Shank3B-/- mice lacking exons 13-16 within the Shank3 gene, reveal distinct Shank3 protein isoform expression in iSPNs and dSPNs. In Shank3B-/- striatum, Shank3E and Shank3NT are expressed by dSPNs but are undetectable in iSPNs. Proteomic analysis indicates significant and selective alterations in the postsynaptic proteome of Shank3B-/- iSPNs. Correspondingly, the deletion of exons 13-16 diminishes dendritic spine density, reduces spine head diameter, and hampers corticostriatal synaptic transmission in iSPNs. Remarkably, reintroducing Shank3E in adult Shank3B-/- iSPNs significantly rectifies the observed dendritic spine morphological and corticostriatal synaptic transmission deficits. We report unexpected cell-type specific synaptic protein isoform expression which could play a key causal role in specifying synapse diversity and selective synapse dysfunction in synaptopathies.

5.
Cell ; 135(4): 738-48, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19013281

RESUMO

The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations. Using bacterial artificial chromosome (BAC) transgenic mice that express EGFP-tagged ribosomal protein L10a in defined cell populations, we have developed a methodology for affinity purification of polysomal mRNAs from genetically defined cell populations in the brain. The utility of this approach is illustrated by the comparative analysis of four types of neurons, revealing hundreds of genes that distinguish these four cell populations. We find that even two morphologically indistinguishable, intermixed subclasses of medium spiny neurons display vastly different translational profiles and present examples of the physiological significance of such differences. This genetically targeted translating ribosome affinity purification (TRAP) methodology is a generalizable method useful for the identification of molecular changes in any genetically defined cell type in response to genetic alterations, disease, or pharmacological perturbations.


Assuntos
Encéfalo/metabolismo , Técnicas Genéticas , Biossíntese de Proteínas , Animais , Sistema Nervoso Central/metabolismo , Cromossomos Artificiais Bacterianos/metabolismo , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica/métodos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Neurônios/metabolismo , Ribossomos/metabolismo
7.
Neurobiol Dis ; 167: 105686, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35272023

RESUMO

The striatum is densely innervated by mesencephalic dopaminergic neurons that modulate acquisition and vigor of goal-directed actions and habits. This innervation is progressively lost in Parkinson's disease (PD), contributing to the defining movement deficits of the disease. Although boosting dopaminergic signaling with levodopa early in the course of the disease alleviates these deficits, later this strategy leads to the emergence of debilitating dyskinesia. Here, recent advances in our understanding of how striatal cells and circuits adapt to this progressive de-innervation and to levodopa therapy are discussed. First, we discuss how dopamine (DA) depletion triggers cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity but also lead to disruption of the synaptic architecture sculpted by experience. Second, we discuss the roles played by cholinergic and nitric oxide-releasing interneurons in these adaptations. Third, we examine recent work in freely moving mice suggesting that alterations in the spatiotemporal dynamics of striatal ensembles contributes to PD movement deficits. Lastly, we discuss recently published evidence from a progressive model of PD suggesting that contrary to the classical model, striatal pathway imbalance is necessary but not sufficient to produce frank parkinsonism.


Assuntos
Doença de Parkinson , Animais , Corpo Estriado/metabolismo , Dopamina/metabolismo , Interneurônios/fisiologia , Levodopa/farmacologia , Camundongos , Doença de Parkinson/metabolismo
8.
Neurobiol Dis ; 168: 105687, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283326

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and motor dysfunction has been attributed to loss of dopaminergic neurons. However, motor dysfunction is only one of many symptoms experienced by patients. A neuropathological hallmark of PD is intraneuronal protein aggregates called Lewy pathology (LP). Neuropathological staging studies have shown that dopaminergic neurons are only one of the many cell types prone to manifest LP. Progressive appearance of LP in multiple brain regions, as well as peripheral nerves, has led to the popular hypothesis that LP and misfolded forms of one of its major components - α-synuclein (aSYN) - can spread through synaptically connected circuits. However, not all brain regions or neurons within connected circuits develop LP, suggesting that cell autonomous factors modulate the development of pathology. Here, we review studies about how LP develops and progressively engages additional brain regions. We focus on how connectivity constrains progression and discuss cell autonomous factors that drive pathology development. We propose a mixed model of cell autonomous factors and trans-synaptic spread as mediators of pathology progression and put forward this model as a framework for future experiments exploring PD pathophysiology.


Assuntos
Doença de Parkinson , Sinucleinopatias , Neurônios Dopaminérgicos/metabolismo , Humanos , Doença de Parkinson/metabolismo , Fenótipo , alfa-Sinucleína/metabolismo
9.
Nat Rev Neurosci ; 18(2): 101-113, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28104909

RESUMO

Intracellular α-synuclein (α-syn)-rich protein aggregates called Lewy pathology (LP) and neuronal death are commonly found in the brains of patients with clinical Parkinson disease (cPD). It is widely believed that LP appears early in the disease and spreads in synaptically coupled brain networks, driving neuronal dysfunction and death. However, post-mortem analysis of human brains and connectome-mapping studies show that the pattern of LP in cPD is not consistent with this simple model, arguing that, if LP propagates in cPD, it must be gated by cell- or region-autonomous mechanisms. Moreover, the correlation between LP and neuronal death is weak. In this Review, we briefly discuss the evidence for and against the spreading LP model, as well as evidence that cell-autonomous factors govern both α-syn pathology and neuronal death.


Assuntos
Encéfalo/metabolismo , Morte Celular , Corpos de Lewy/patologia , Neurônios/patologia , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Humanos
10.
Mov Disord ; 37(6): 1164-1174, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35485341

RESUMO

BACKGROUND: The network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) is poorly understood. In models of late-stage PD, there is significant cell-specific remodeling of corticostriatal, axospinous glutamatergic synapses on principal spiny projection neurons (SPNs). Neurons in the centrolateral nucleus (CLN) of the thalamus that relay cerebellar activity to the striatum also make axospinous synapses on SPNs, but the extent to which they are affected in PD has not been definitively characterized. OBJECTIVE: To fill this gap, transgenic mice in which CLN neurons express Cre recombinase were used in conjunction with optogenetic and circuit mapping approaches to determine changes in the CLN projection to SPNs in a unilateral 6-hydroxydopamine (6-OHDA) model of late-stage PD. METHODS: Adeno-associated virus vectors carrying Cre-dependent opsin expression constructs were stereotaxically injected into the CLN of Grp-KH288 mice in which CLN, but not parafascicular nucleus neurons, expressed Cre recombinase. The properties of this projection to identify direct pathway spiny projection neurons (dSPNs) and indirect pathway spiny projection neurons (iSPNs) were then studied in ex vivo brain slices of the dorsolateral striatum from control and 6-OHDA lesioned mice using anatomic, optogenetic, and electrophysiological approaches. RESULTS: Optogenetically evoked excitatory synaptic currents in both iSPNs and dSPNs were reduced in lesioned mice; however, the reduction was significantly greater in dSPNs. In iSPNs, the reduction in evoked responses was attributable to synaptic pruning, because synaptic channelrhodopsin assisted circuit mapping (sCRACm) revealed fewer synapses per cell after lesioning. In contrast, sCRACm mapping of CLN inputs to dSPNs failed to detect any change in synapse abundance in lesioned mice. However, the ratio of currents through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors to those through N-methyl-D-aspartate receptors was significantly reduced in dSPNs. Moreover, the distribution of currents evoked by optical stimulation of individual synapses shifted toward smaller amplitudes by lesioning, suggesting that they had undergone long-term depression. CONCLUSIONS: Taken together, our results demonstrate that the CLN projection to the striatum undergoes a pathway-specific remodeling that could contribute to the circuit imbalance thought to drive the hypokinetic features of PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Núcleos Intralaminares do Tálamo , Doença de Parkinson , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Oxidopamina/toxicidade , Sinapses/fisiologia
11.
Mov Disord ; 37(2): 334-342, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34766657

RESUMO

BACKGROUND: Recent examination of the STEADY-PD III isradipine clinical trial data concluded that early-stage Parkinson's disease (PD) participants who had longer exposure to isradipine had a significant delay in their need for symptomatic medication, as well as a lower medication burden at the end of the trial. These findings suggest that greater exposure to isradipine might slow disease progression. OBJECTIVES: To test this hypothesis, the data from the STEADY-PD II isradipine clinical trial, in which an extended-release (ER) formulation of the drug was used, was re-examined. METHODS: The re-analysis of the STEADY-PD II data was restricted to participants assigned placebo or tolerable isradipine treatment (10 mg isradipine/day or less). The effect of isradipine treatment was assessed by Unified Parkinson's Disease Rating Scale (UPDRS) at the end of the 52-week trial, rather than by last observation carried forward at the beginning of symptomatic therapy. RESULTS: Participant cohorts were well-matched for baseline disability, initial disease progression, and time to initiation of symptomatic therapy. Participants given 10 mg/day ER isradipine had significantly smaller total and part 3 UPDRS scores at the end of the trial than did the placebo cohort. Post hoc adjustment for symptomatic therapy diminished the statistical significance of these differences. In those participants not taking a monoamine oxidase B inhibitor, the progression in UPDRS scores also was significantly reduced. CONCLUSIONS: These results are consistent with the recent secondary analysis of the STEADY-PD III clinical trial-suggesting that clinically attainable brain exposure to isradipine may slow early-stage PD progression. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Ensaios Clínicos como Assunto , Progressão da Doença , Método Duplo-Cego , Humanos , Isradipino/uso terapêutico , Testes de Estado Mental e Demência , Inibidores da Monoaminoxidase/uso terapêutico , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico
12.
Neurobiol Dis ; 156: 105409, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34082123

RESUMO

Methamphetamine abuse is associated with an increased risk of developing Parkinson's disease (PD). Recently, it was found that methamphetamine increases mitochondrial oxidant stress in substantia nigra pars compacta (SNc) dopaminergic neurons by releasing vesicular dopamine (DA) and stimulating mitochondrially-anchored monoamine oxidase (MAO). As mitochondrial oxidant stress is widely thought to be a driver of SNc degeneration in PD, these observations provide a potential explanation for the epidemiological linkage. To test this hypothesis, mice were administered methamphetamine (5 mg/kg) for 28 consecutive days with or without pretreatment with an irreversible MAO inhibitor. Chronic methamphetamine administration resulted in the degeneration of SNc dopaminergic neurons and this insult was blocked by pretreatment with a MAO inhibitor - confirming the linkage between methamphetamine, MAO and SNc degeneration. To determine if shorter bouts of consumption were as damaging, mice were given methamphetamine for two weeks and then studied. Methamphetamine treatment elevated both axonal and somatic mitochondrial oxidant stress in SNc dopaminergic neurons, was associated with a modest but significant increase in firing frequency, and caused degeneration after drug cessation. While axonal stress was sensitive to MAO inhibition, somatic stress was sensitive to Cav1 Ca2+ channel inhibition. Inhibiting either MAO or Cav1 Ca2+ channels after methamphetamine treatment attenuated subsequent SNc degeneration. Our results not only establish a mechanistic link between methamphetamine abuse and PD, they point to pharmacological strategies that could lessen PD risk for patients with a methamphetamine use disorder.


Assuntos
Dopaminérgicos/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Metanfetamina/toxicidade , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Técnicas de Cultura de Órgãos , Estresse Oxidativo/fisiologia , Substância Negra/metabolismo , Substância Negra/patologia
13.
Neurobiol Dis ; 158: 105473, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371144

RESUMO

CalDAG-GEFI (CDGI) is a protein highly enriched in the striatum, particularly in the principal spiny projection neurons (SPNs). CDGI is strongly down-regulated in two hyperkinetic conditions related to striatal dysfunction: Huntington's disease and levodopa-induced dyskinesia in Parkinson's disease. We demonstrate that genetic deletion of CDGI in mice disrupts dendritic, but not somatic, M1 muscarinic receptors (M1Rs) signaling in indirect pathway SPNs. Loss of CDGI reduced temporal integration of excitatory postsynaptic potentials at dendritic glutamatergic synapses and impaired the induction of activity-dependent long-term potentiation. CDGI deletion selectively increased psychostimulant-induced repetitive behaviors, disrupted sequence learning, and eliminated M1R blockade of cocaine self-administration. These findings place CDGI as a major, but previously unrecognized, mediator of cholinergic signaling in the striatum. The effects of CDGI deletion on the self-administration of drugs of abuse and its marked alterations in hyperkinetic extrapyramidal disorders highlight CDGI's therapeutic potential.


Assuntos
Dendritos , Fatores de Troca do Nucleotídeo Guanina/genética , Neostriado/fisiopatologia , Plasticidade Neuronal , Sistema Nervoso Parassimpático/fisiopatologia , Sinapses , Animais , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/fisiopatologia , Doenças dos Gânglios da Base/psicologia , Estimulantes do Sistema Nervoso Central/farmacologia , Potenciais Pós-Sinápticos Excitadores/genética , Hipercinese/genética , Hipercinese/psicologia , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Polimorfismo de Nucleotídeo Único , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/fisiologia , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/psicologia
14.
J Neurosci ; 39(29): 5760-5772, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31097622

RESUMO

The accumulation of misfolded proteins is a common pathological feature of many neurodegenerative disorders, including synucleinopathies such as Parkinson's disease (PD), which is characterized by the presence of α-synuclein (α-syn)-containing Lewy bodies. However, although recent studies have investigated α-syn accumulation and propagation in neurons, the molecular mechanisms underlying α-syn transmission have been largely unexplored. Here, we examined a monogenic form of synucleinopathy caused by loss-of-function mutations in lysosomal ATP13A2/PARK9. These studies revealed that lysosomal exocytosis regulates intracellular levels of α-syn in human neurons. Loss of PARK9 function in patient-derived dopaminergic neurons disrupted lysosomal Ca2+ homeostasis, reduced lysosomal Ca2+ storage, increased cytosolic Ca2+, and impaired lysosomal exocytosis. Importantly, this dysfunction in lysosomal exocytosis impaired α-syn secretion from both axons and soma, promoting α-syn accumulation. However, activation of the lysosomal Ca2+ channel transient receptor potential mucolipin 1 (TRPML1) was sufficient to upregulate lysosomal exocytosis, rescue defective α-syn secretion, and prevent α-syn accumulation. Together, these results suggest that intracellular α-syn levels are regulated by lysosomal exocytosis in human dopaminergic neurons and may represent a potential therapeutic target for PD and other synucleinopathies.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is the second most common neurodegenerative disease linked to the accumulation of α-synuclein (α-syn) in patient neurons. However, it is unclear what the mechanism might be. Here, we demonstrate a novel role for lysosomal exocytosis in clearing intracellular α-syn and show that impairment of this pathway by mutations in the PD-linked gene ATP13A2/PARK9 contributes to α-syn accumulation in human dopaminergic neurons. Importantly, upregulating lysosomal exocytosis by increasing lysosomal Ca2+ levels was sufficient to rescue defective α-syn secretion and accumulation in patient neurons. These studies identify lysosomal exocytosis as a potential therapeutic target in diseases characterized by the accumulation of α-syn, including PD.


Assuntos
Agonistas dos Canais de Cálcio/farmacologia , Neurônios Dopaminérgicos/metabolismo , Exocitose/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/metabolismo , alfa-Sinucleína/toxicidade , Linhagem Celular Tumoral , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
16.
Neurobiol Dis ; 128: 3-8, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30171892

RESUMO

In the last decade, scientific and clinical interest in the pedunculopontine nucleus (PPN) has grown dramatically. This growth is largely a consequence of experimental work demonstrating its connection to the control of gait and of clinical work implicating PPN pathology in levodopa-insensitive gait symptoms of Parkinson's disease (PD). In addition, the development of optogenetic and chemogenetic approaches has made experimental analysis of PPN circuitry and function more tractable. In this brief review, recent findings in the field linking PPN to the basal ganglia and PD are summarized; in addition, an attempt is made to identify key gaps in our understanding and challenges this field faces in moving forward.


Assuntos
Neurônios Colinérgicos/patologia , Marcha , Doença de Parkinson/patologia , Núcleo Tegmental Pedunculopontino/patologia , Humanos
17.
Hum Mol Genet ; 26(10): 1915-1926, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28369333

RESUMO

Age-dependent elevation in mitochondrial oxidative stress is widely posited to be a major factor underlying the loss of substantia nigra pars compacta (SNc) dopaminergic neurons in Parkinson's disease (PD). However, mechanistic links between aging and oxidative stress are not well understood. Sirtuin-3 (Sirt3) is a mitochondrial deacetylase that could mediate this connection. Indeed, genetic deletion of Sirt3 increased oxidative stress and decreased the membrane potential of mitochondria in SNc dopaminergic neurons. This change was attributable to increased acetylation and decreased activity of manganese superoxide dismutase (MnSOD). Site directed mutagenesis of lysine 68 to glutamine (K68Q), mimicking acetylation, decreased MnSOD activity in SNc dopaminergic neurons, whereas mutagenesis of lysine 68 to arginine (K68R), mimicking deacetylation, increased activity. Introduction of K68R MnSOD rescued mitochondrial redox status and membrane potential of SNc dopaminergic neurons from Sirt3 knockouts. Moreover, deletion of DJ-1, which helps orchestrate nuclear oxidant defenses and Sirt3 in mice led to a clear age-related loss of SNc dopaminergic neurons. Lastly, K68 acetylation of MnSOD was significantly increased in the SNc of PD patients. Taken together, our studies suggest that an age-related decline in Sirt3 protective function is a major factor underlying increasing mitochondrial oxidative stress and loss of SNc dopaminergic neurons in PD.


Assuntos
Sirtuína 3/metabolismo , Superóxido Dismutase/genética , Acetilação , Fatores Etários , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mutagênese Sítio-Dirigida , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Doença de Parkinson/genética , Sirtuína 3/genética , Substância Negra/metabolismo , Superóxido Dismutase/metabolismo
18.
Annu Rev Neurosci ; 34: 441-66, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21469956

RESUMO

The basal ganglia are a chain of subcortical nuclei that facilitate action selection. Two striatal projection systems--so-called direct and indirect pathways--form the functional backbone of the basal ganglia circuit. Twenty years ago, investigators proposed that the striatum's ability to use dopamine (DA) rise and fall to control action selection was due to the segregation of D(1) and D(2) DA receptors in direct- and indirect-pathway spiny projection neurons. Although this hypothesis sparked a debate, the evidence that has accumulated since then clearly supports this model. Recent advances in the means of marking neural circuits with optical or molecular reporters have revealed a clear-cut dichotomy between these two cell types at the molecular, anatomical, and physiological levels. The contrast provided by these studies has provided new insights into how the striatum responds to fluctuations in DA signaling and how diseases that alter this signaling change striatal function.


Assuntos
Gânglios da Base/metabolismo , Corpo Estriado/fisiologia , Dopamina/metabolismo , Modelos Neurológicos , Animais , Retroalimentação Fisiológica/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Doença de Parkinson/patologia , Receptores Dopaminérgicos/metabolismo , Transdução de Sinais
19.
Mov Disord ; 34(5): 684-696, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726572

RESUMO

BACKGROUND: Huntington's disease (HD) is caused by a CAG repeat expansion in the huntingtin gene. This mutation leads to progressive dysfunction that is largely attributable to dysfunction of the striatum. The earliest signs of striatal pathology in HD are found in indirect pathway gamma-Aminobutyric acid (GABA)-ergic spiny projection neurons that innervate the external segment of the globus pallidus (GPe). What is less clear is whether the synaptic coupling of spiny projection neurons with GPe neurons changes in HD. OBJECTIVES: The principal goal of this study was to determine whether striatopallidal synaptic transmission was altered in 2 mouse models of HD. METHODS: Striatopallidal synaptic transmission was studied using electrophysiological and optogenetic approaches in ex vivo brain slices from 2 HD models: Q175 heterozygous (het) and R6/2 mice. RESULTS: Striatopallidal synaptic transmission increased in strength with the progression of behavioral deficits in Q175 and R6/2 mice. The alteration in synaptic transmission was evident in both prototypical and arkypallidal GPe neurons. This change did not appear attributable to an increase in the probability of GABA release but, rather, to an enhancement in the postsynaptic response to GABA released at synaptic sites. This alteration significantly increased the ability of striatopallidal axon terminals to pause ongoing GPe activity. CONCLUSIONS: In 2 mouse models of HD, striatopallidal synaptic transmission increased in parallel with the progression of behavioral deficits. This adaptation could compensate in part for the concomitant deficit in the ability of corticostriatal signals to activate spiny projection neurons and pause GPe activity. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Neurônios GABAérgicos/metabolismo , Globo Pálido/metabolismo , Doença de Huntington/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Neostriado/metabolismo , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Técnicas de Introdução de Genes , Proteína Huntingtina/genética , Doença de Huntington/genética , Camundongos , Vias Neurais/metabolismo , Neurônios/metabolismo , Optogenética , Técnicas de Patch-Clamp , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
20.
Mol Psychiatry ; 23(9): 1832-1850, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29610457

RESUMO

Contactin associated protein-like 2 (CNTNAP2) has emerged as a prominent susceptibility gene implicated in multiple complex neurodevelopmental disorders, including autism spectrum disorders (ASD), intellectual disability (ID), and schizophrenia (SCZ). The presence of seizure comorbidity in many of these cases, as well as inhibitory neuron dysfunction in Cntnap2 knockout (KO) mice, suggests CNTNAP2 may be crucial for proper inhibitory network function. However, underlying cellular mechanisms are unclear. Here we show that cultured Cntnap2 KO mouse neurons exhibit an inhibitory neuron-specific simplification of the dendritic tree. These alterations can be replicated by acute knockdown of CNTNAP2 in mature wild-type (WT) neurons and are caused by faulty dendrite stabilization rather than outgrowth. Using structured illumination microscopy (SIM) and stimulated-emission depletion microscopy (STED), two super-resolution imaging techniques, we uncovered relationships between nanoscale CNTNAP2 protein localization and dendrite arborization patterns. Employing yeast two-hybrid screening, biochemical analysis, in situ proximity ligation assay (PLA), SIM, and phenotype rescue, we show that these effects are mediated at the membrane by the interaction of CNTNAP2's C-terminus with calcium/calmodulin-dependent serine protein kinase (CASK), another ASD/ID risk gene. Finally, we show that adult Cntnap2 KO mice have reduced interneuron dendritic length and branching in particular cortical regions, as well as decreased CASK levels in the cortical membrane fraction. Taken together, our data reveal an interneuron-specific mechanism for dendrite stabilization that may provide a cellular mechanism for inhibitory circuit dysfunction in CNTNAP2-related disorders.


Assuntos
Guanilato Quinases/metabolismo , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Células Dendríticas/fisiologia , Interneurônios , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Plasticidade Neuronal/genética , Neurônios/fisiologia , Fenótipo , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA