Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(11): 2359-2371, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38728258

RESUMO

Elucidating the underlying principles of amyloid protein self-assembly at nanobio interfaces is extremely challenging due to the diversity in physicochemical properties of nanomaterials and their physical interactions with biological systems. It is, therefore, important to develop nanoscale materials with dynamic features and heterogeneities. In this work, through engineering of hierarchical polyethylene glycol (PEG) structures on gold nanoparticle (GNP) surfaces, tailored nanomaterials with different surface properties and conformations (GNPs-PEG) are created for modulating the self-assembly of a widely studied protein, insulin, under amyloidogenic conditions. Important biophysical studies including thioflavin T (ThT) binding, circular dichroism (CD), surface plasmon resonance (SPR), and atomic force microscopy (AFM) showed that higher-molecular weight GNPs-PEG triggered the formation of amyloid fibrils by promoting adsorption of proteins at nanoparticle surfaces and favoring primary nucleation rate. Moreover, the modulation of fibrillation kinetics reduces the overall toxicity of insulin oligomers and fibrils. In addition, the interaction between the PEG polymer and amyloidogenic insulin examined using MD simulations revealed major changes in the secondary structural elements of the B chain of insulin. The experimental findings provide molecular-level descriptions of how the PEGylated nanoparticle surface modulates protein adsorption and drives the self-assembly of insulin. This facile approach provides a new avenue for systematically altering the binding affinities on nanoscale surfaces by tailoring their topologies for examining adsorption-induced fibrillogenesis phenomena of amyloid proteins. Together, this study suggests the role of nanobio interfaces during surface-induced heterogeneous nucleation as a primary target for designing therapeutic interventions for amyloid-related neurodegenerative disorders.


Assuntos
Amiloide , Ouro , Insulina , Nanopartículas Metálicas , Polietilenoglicóis , Ouro/química , Nanopartículas Metálicas/química , Humanos , Insulina/metabolismo , Insulina/química , Polietilenoglicóis/química , Amiloide/metabolismo , Amiloide/química , Microscopia de Força Atômica , Propriedades de Superfície , Dicroísmo Circular , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície
2.
Biosensors (Basel) ; 13(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36671944

RESUMO

Frequent outbreaks of food-borne pathogens, particularly E. coli O157:H7, continue to impact human health and the agricultural economy tremendously. The required cell count for this pathogenic strain of E. coli O157:H7 is relatively low and hence it is vital to detect at low colony forming unit (CFU) counts. Available detection methods, though sensitive, fall short in terms of timeliness and often require extensive sample processing. To overcome these limitations, we propose a novel magneto-plasmonic nanosensor (MPnS) by integrating surface plasmon resonance (SPR) properties with spin-spin magnetic relaxation (T2 MR) technology. We engineered MPnS by encapsulating several gold nanoparticles (GNPs) within the polymer-coating of iron oxide nanoparticles (IONPs). First, the polyacrylic acid (PAA)-coated IONPs were synthesized using a solvent precipitation method, then gold chloride solution was used to synthesize GNPs and encapsulate them within the PAA-coatings of IONPs in one step. A magnetic separation technique was used to purify the MPnS and the presence of GNPs within IONPs was characterized using transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and other spectroscopic methods. The synthesized MPnS exhibits MR relaxation properties while possessing amplified optical properties than conventional GNPs. This allows for rapid and ultrasensitive detection of E. coli O157:H7 by SPR, T2 MR, and colorimetric readout. Experiments conducted in simple buffer and in milk as a complex media demonstrated that our MPnS-based assay could detect as low as 10 CFUs of this pathogenic strain of E. coli O157:H7 in minutes with no cross-reactivity. Overall, the formulated MPnS is robust and holds great potential for the ultrasensitive detection of E. coli O157:H7 in a simple and timely fashion. Moreover, this platform is highly customizable and can be used for the detection of other foodborne pathogens.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Nanopartículas Metálicas , Humanos , Animais , Microbiologia de Alimentos , Ouro/química , Nanopartículas Metálicas/química , Leite , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA