Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
N Engl J Med ; 378(3): 250-261, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29298116

RESUMO

BACKGROUND: Sporadic arteriovenous malformations of the brain, which are morphologically abnormal connections between arteries and veins in the brain vasculature, are a leading cause of hemorrhagic stroke in young adults and children. The genetic cause of this rare focal disorder is unknown. METHODS: We analyzed tissue and blood samples from patients with arteriovenous malformations of the brain to detect somatic mutations. We performed exome DNA sequencing of tissue samples of arteriovenous malformations of the brain from 26 patients in the main study group and of paired blood samples from 17 of those patients. To confirm our findings, we performed droplet digital polymerase-chain-reaction (PCR) analysis of tissue samples from 39 patients in the main study group (21 with matching blood samples) and from 33 patients in an independent validation group. We interrogated the downstream signaling pathways, changes in gene expression, and cellular phenotype that were induced by activating KRAS mutations, which we had discovered in tissue samples. RESULTS: We detected somatic activating KRAS mutations in tissue samples from 45 of the 72 patients and in none of the 21 paired blood samples. In endothelial cell-enriched cultures derived from arteriovenous malformations of the brain, we detected KRAS mutations and observed that expression of mutant KRAS (KRASG12V) in endothelial cells in vitro induced increased ERK (extracellular signal-regulated kinase) activity, increased expression of genes related to angiogenesis and Notch signaling, and enhanced migratory behavior. These processes were reversed by inhibition of MAPK (mitogen-activated protein kinase)-ERK signaling. CONCLUSIONS: We identified activating KRAS mutations in the majority of tissue samples of arteriovenous malformations of the brain that we analyzed. We propose that these malformations develop as a result of KRAS-induced activation of the MAPK-ERK signaling pathway in brain endothelial cells. (Funded by the Swiss Cancer League and others.).


Assuntos
Malformações Arteriovenosas Intracranianas/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Adulto , Células Cultivadas , Análise Mutacional de DNA , Exoma , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Malformações Arteriovenosas Intracranianas/etiologia , Malformações Arteriovenosas Intracranianas/patologia , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
2.
Acta Neurochir (Wien) ; 163(9): 2503-2514, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34185176

RESUMO

BACKGROUND: Brain arteriovenous malformations (bAVM) may rupture causing disability or death. BAVM vessels are characterized by abnormally high flow that in general triggers expansive vessel remodeling mediated by cyclo-oxygenase-2 (COX2), the target of non-steroidal anti-inflammatory drugs. We investigated whether COX2 is expressed in bAVMs and whether it associates with inflammation and haemorrhage in these lesions. METHODS: Tissue was obtained from surgery of 139 bAVMs and 21 normal Circle of Willis samples. The samples were studied with immunohistochemistry and real-time quantitative polymerase chain reaction (RT-PCR). Clinical data was collected from patient records. RESULTS: COX2 expression was found in 78% (109/139) of the bAVMs and localized to the vessels' lumen or medial layer in 70% (95/135) of the bAVMs. Receptors for prostaglandin E2, a COX2-derived mediator of vascular remodeling, were found in the endothelial and smooth muscle cells and perivascular inflammatory cells of bAVMs. COX2 was expressed by infiltrating inflammatory cells and correlated with the extent of inflammation (r = .231, p = .007, Spearman rank correlation). COX2 expression did not associate with haemorrhage. CONCLUSION: COX2 is induced in bAVMs, and possibly participates in the regulation of vessel wall remodelling and ongoing inflammation. Role of COX2 signalling in the pathobiology and clinical course of bAVMs merits further studies.


Assuntos
Encéfalo/metabolismo , Ciclo-Oxigenase 2 , Malformações Arteriovenosas Intracranianas , Remodelação Vascular , Encéfalo/patologia , Ciclo-Oxigenase 2/genética , Humanos , Inflamação , Malformações Arteriovenosas Intracranianas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA