RESUMO
CcaA is a ß-carbonic anhydrase (CA) that is a component of the carboxysomes of a subset of ß-cyanobacteria. This protein, which has a characteristic C-terminal extension of unknown function, is recruited to the carboxysome via interactions with CcmM, which is itself a γ-CA homolog with enzymatic activity in many, but not all cyanobacteria. We have determined the structure of CcaA from Synechocystis sp. PCC 6803 at 1.45â Å. In contrast with the dimer-of-dimers organization of most bacterial ß-CAs, or the loose dimer-of-dimers-of-dimers organization found in the plant enzymes, CcaA shows a well-packed trimer-of-dimers organization. The proximal part of the characteristic C-terminal extension is ordered by binding at a site that passes through the two-fold symmetry axis shared with an adjacent dimer; as a result, only one of a pair of converging termini can be ordered at any given time. Docking in Rosetta failed to find well-packed solutions, indicating that formation of the CcaA/CcmM complex probably requires significant backbone movements in at least one of the binding partners. Surface plasmon resonance experiments showed that CcaA forms a complex with CcmM with sub-picomolar affinity, with contributions from residues in CcmM's αA helix and CcaA's C-terminal tail. Catalytic characterization showed CcaA to be among the least active ß-CAs characterized to date, with activity comparable with the γ-CA, CcmM, it either complements or replaces. Intriguingly, the C-terminal tail appears to partly inhibit activity, possibly indicating a role in minimizing the activity of unencapsulated enzyme.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Synechococcus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Cinética , Dados de Sequência Molecular , Multimerização Proteica , Ressonância de Plasmônio de SuperfícieRESUMO
Cancers are often defined by the dysregulation of specific transcriptional programs; however, the importance of global transcriptional changes is less understood. Hypertranscription is the genome-wide increase in RNA output. Hypertranscription's prevalence, underlying drivers, and prognostic significance are undefined in primary human cancer. This is due, in part, to limitations of expression profiling methods, which assume equal RNA output between samples. Here, we developed a computational method to directly measure hypertranscription in 7494 human tumors, spanning 31 cancer types. Hypertranscription is ubiquitous across cancer, especially in aggressive disease. It defines patient subgroups with worse survival, even within well-established subtypes. Our data suggest that loss of transcriptional suppression underpins the hypertranscriptional phenotype. Single-cell analysis reveals hypertranscriptional clones, which dominate transcript production regardless of their size. Last, patients with hypertranscribed mutations have improved response to immune checkpoint therapy. Our results provide fundamental insights into gene dysregulation across human cancers and may prove useful in identifying patients who would benefit from novel therapies.
Assuntos
Neoplasias , Humanos , Neoplasias/genética , Prognóstico , RNARESUMO
BACKGROUND: Embryonal tumours with multi-layered rosettes (ETMRs) are a newly recognised, rare paediatric brain tumour with alterations of the C19MC microRNA locus. Due to varied diagnostic practices and scarce clinical data, disease features and determinants of outcomes for these tumours are poorly defined. We did an integrated clinicopathological and molecular analysis of primary ETMRs to define clinical phenotypes, and to identify prognostic factors of survival and key treatment modalities for this orphan disease. METHODS: Paediatric patients with primary ETMRs and tissue available for analyses were identified from the Rare Brain Tumor Consortium global registry. The institutional histopathological diagnoses were centrally re-reviewed as per the current WHO CNS tumour guidelines, using histopathological and molecular assays. Only patients with complete clinical, treatment, and survival data on Nov 30, 2019, were included in clinicopathological analyses. Among patients who received primary multi-modal curative regimens, event-free survival and overall survival were determined using Cox proportional hazard and log-rank analyses. Univariate and multivariable Cox proportional hazard regression was used to estimate hazard ratios (HRs) with 95% CIs for clinical, molecular, or treatment-related prognostic factors. FINDINGS: 159 patients had a confirmed molecular diagnosis of primary ETMRs (median age at diagnosis 26 months, IQR 18-36) and were included in our clinicopathological analysis. ETMRs were predominantly non-metastatic (94 [73%] of 128 patients), arising from multiple sites; 84 (55%) of 154 were cerebral tumours and 70 (45%) of 154 arose at sites characteristic of other brain tumours. Hallmark C19MC alterations were seen in 144 (91%) of 159 patients; 15 (9%) were ETMR not otherwise specified. In patients treated with curative intent, event-free survival was 57% (95% CI 47-68) at 6 months and 31% (21-42) at 2 years; overall survival was 29% (20-38) at 2 years and 27% (18-37) at 4 years. Overall survival was associated with non-metastatic disease (HR 0·48, 95% CI 0·28-0·80; p=0·0057) and non-brainstem location (0·42 [0·22-0·81]; p=0·013) on univariate analysis, as well as with gross total resection (0·30, 0·16-0·58; p=0·0014), high-dose chemotherapy (0·35, 0·19-0·67; p=0·0020), and radiotherapy (0·21, 0·10-0·41; p<0·0001) on multivariable analysis. 2-year event-free and overall survival was 0% at 2 years in patients treated with conventional chemotherapy without radiotherapy (regardless of surgery extent), and 21% (95% CI 1-41) and 30% (6-54), respectively, in patients treated with high-dose chemotherapy, and gross total resection without radiotherapy. 2-year event-free survival in patients treated with high-dose chemotherapy and radiotherapy was 66% (95% CI 39-93) for patients with gross total resection and 44% (7-81) for patients with sub-total resection. 2-5-year overall survival was 66% (95% CI 33-99, p=0·038) for patients with gross total resection and 67% (36-98, p=0·0020) for patients with sub-total resection. INTERPRETATION: Prompt molecular diagnosis and post-surgical treatment with intensive multi-modal therapy tailored to patient-specific risk features could improve ETMR survival. FUNDING: Canadian Institute of Health Research, Canada Research Chair Awards, Australian Lions Childhood Cancer Research Foundation, Spanish Society of Pediatrics, Consejería de Salud y Familias de la Junta de Andalucía, Miracle Marnie, Phoebe Rose Rocks, Tali's Funds, Garron Cancer Centre, Grace's Walk, Meagan's Hug, Brainchild, Nelina's Hope, and Jean Martel Foundation.
Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Terapia Combinada , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Embrionárias de Células Germinativas/terapia , Neoplasias Encefálicas/mortalidade , Quimioterapia Adjuvante , Criança , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Neoplasias Embrionárias de Células Germinativas/mortalidade , Procedimentos Neurocirúrgicos , Prognóstico , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , RNA Mensageiro , Radioterapia AdjuvanteRESUMO
Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death.