Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acc Chem Res ; 52(3): 645-655, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30543407

RESUMO

The development of efficient solar energy conversion to augment other renewable energy approaches is one of the grand challenges of our time. Water splitting, or the disproportionation of H2O into energy-dense fuels, H2 and O2, is undoubtedly a promising strategy. Solar water splitting involves the concerted transfer of four electrons and four protons, which requires the synergistic operation of solar light harvesting, charge separation, mass and charge transport, and redox catalysis processes. It is unlikely that individual materials can mediate the entire sequence of charge and mass transport as well as energy conversion processes necessary for photocatalytic water splitting. An alternative approach, emulating the functioning of photosynthetic systems, involves the utilization of hybrid systems wherein different components perform the various functions required for solar water splitting. The design of such hybrid systems requires the multiple components to operate in lockstep with optimal thermodynamic driving forces and interfacial charge transfer kinetics. This Account describes a new class of nanoscale heterostructures comprising M xV2O5 nanowires, where M is a p-block cation with a ( n - 1) d10 ns2 np0 electronic configuration characterized by a stereoactive lone pair of electrons and x is its stoichiometry, interfaced with II-VI semiconductor quantum dots (QDs). Photocatalytic water splitting involves the transfer of excited-state holes from QDs to mid-gap states (derived from the stereoactive lone pairs of p-block cations) of nanowires, hole transport through nanowires, the reduction of protons at a QD-immobilized catalyst, and water oxidation at an anode. The M xV2O5/QD architectures provide a vast design space for evolutionary optimization of function with considerable tunability of composition and structure of the individual components as well as of the interfacial structure, thereby facilitating programmability of absorption spectra, energetic offsets, and charge-transfer reactivity. The available design space spans choice of the p-block cation M, its stoichiometry x, the composition and size of various QDs, and the nature of the nanowire/QD interface. This multivariate parameter space has been navigated by integrating first-principles modeling, diversified synthesis, spectroscopic measurements, and catalytic evaluation to facilitate the rational design of several generations of heterostructures and the systematic improvement of their photocatalytic performance. The electronic structures of the target heterostructures are predicted by DFT calculations in light of the revised lone pair model of stereoactive structural distortions and evaluated by hard X-ray photoelectron spectroscopy such as to systematically tune the interfacial band offsets. Central to this approach is the development of a topochemical "etch-a-sketch" intercalation approach that allows for facile installation of p-block cations in metastable polymorphs of V2O5. The interfacial charge transfer kinetics of M xV2O5/QD heterostructures is further evaluated by transient absorption spectroscopy to measure excited-state charge-transfer dynamics and is found to depend sensitively on interfacial structure and the thermodynamic driving forces in accordance with Marcus theory. The integration of theory and experiment has allowed for the design of viable photocatalytic architectures exemplified by the exceptional catalytic performance of ß-Pb xV2O5/CdX (X= S, Se) architectures, which has subsequently been elaborated to other lone-pair M xV2O5 compounds, demonstrating the effective exploitation of the opportunities for programmability available in the design space.

2.
J Chem Phys ; 151(22): 224702, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837697

RESUMO

We synthesized a new class of heterostructures by depositing CdS, CdSe, or CdTe quantum dots (QDs) onto α-V2O5 nanowires (NWs) via either successive ionic layer adsorption and reaction (SILAR) or linker-assisted assembly (LAA). SILAR yielded the highest loadings of QDs per NW, whereas LAA enabled better control over the size and properties of QDs. Soft and hard x-ray photoelectron spectroscopy in conjunction with density functional theory calculations revealed that all α-V2O5/QD heterostructures exhibited Type-II band offset energetics, with a staggered gap where the conduction- and valence-band edges of α-V2O5 NWs lie at lower energies (relative to the vacuum level) than their QD counterparts. Transient absorption spectroscopy measurements revealed that the Type-II energetic offsets promoted the ultrafast (10-12-10-11 s) separation of photogenerated electrons and holes across the NW/QD interface to yield long-lived (10-6 s) charge-separated states. Charge-transfer dynamics and charge-recombination time scales varied subtly with the composition of heterostructures and the nature of the NW/QD interface, with both charge separation and recombination occurring more rapidly within SILAR-derived heterostructures. LAA-derived α-V2O5/CdSe heterostructures promoted the photocatalytic reduction of aqueous protons to H2 with a 20-fold or greater enhancement relative to isolated colloidal CdSe QDs or dispersed α-V2O5 NWs. The separation of photoexcited electrons and holes across the NW/QD interface could thus be exploited in redox photocatalysis. In light of their programmable compositions and properties and their Type-II energetics that drive ultrafast charge separation, the α-V2O5/QD heterostructures are a promising new class of photocatalyst architectures ripe for continued exploration.

3.
J Am Chem Soc ; 140(49): 17163-17174, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30380858

RESUMO

Tackling the complex challenge of harvesting solar energy to generate energy-dense fuels such as hydrogen requires the design of photocatalytic nanoarchitectures interfacing components that synergistically mediate a closely interlinked sequence of light-harvesting, charge separation, charge/mass transport, and catalytic processes. The design of such architectures requires careful consideration of both thermodynamic offsets and interfacial charge-transfer kinetics to ensure long-lived charge carriers that can be delivered at low overpotentials to the appropriate catalytic sites while mitigating parasitic reactions such as photocorrosion. Here we detail the theory-guided design and synthesis of nanowire/quantum dot heterostructures with interfacial electronic structure specifically tailored to promote light-induced charge separation and photocatalytic proton reduction. Topochemical synthesis yields a metastable ß-Sn0.23V2O5 compound exhibiting Sn 5s-derived midgap states ideally positioned to extract photogenerated holes from interfaced CdSe quantum dots. The existence of these midgap states near the upper edge of the valence band (VB) has been confirmed, and ß-Sn0.23V2O5/CdSe heterostructures have been shown to exhibit a 0 eV midgap state-VB offset, which underpins ultrafast subpicosecond hole transfer. The ß-Sn0.23V2O5/CdSe heterostructures are further shown to be viable photocatalytic architectures capable of efficacious hydrogen evolution. The results of this study underscore the criticality of precisely tailoring the electronic structure of semiconductor components to effect rapid charge separation necessary for photocatalysis.

4.
Anal Chem ; 88(7): 3624-31, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26956547

RESUMO

Thiols, including organothiol and thiol-containing biomolecules, are among the most important classes of chemicals that are used broadly in organic synthesis, biological chemistry, and nanosciences. Thiol pKa values are key indicators of thiol reactivity and functionality. Reported herein is an internally referenced Raman-based pH titration method that enables reliable quantification of thiol pKa values for both mono- and dithiols in water. The degree of thiol ionization is monitored directly using the peak intensity of the S-H stretching feature in the 2600 cm(-1) region relative to an internal reference peak as a function of the titration solution's pH. The thiol pKa values and Raman activity relative to its internal reference were then determined by curve fitting the experimental data with equations derived on the basis of the Henderson-Hasselbalch equation. Using this Raman titration method, we determined for the first time the first and second thiol pKa values for 1,2-benzenedithiol in water. This Raman-based method is convenient to implement, and its underlying theory is easy to follow. It should therefore have broad application for thiol pKa determinations and verification.


Assuntos
Compostos de Sulfidrila/química , Modelos Químicos , Solubilidade , Análise Espectral Raman , Titulometria/métodos
5.
ACS Appl Mater Interfaces ; 12(39): 43728-43740, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32866372

RESUMO

Solar fuel generation mediated by semiconductor heterostructures represents a promising strategy for sustainable energy conversion and storage. The design of semiconductor heterostructures for photocatalytic energy conversion requires the separation of photogenerated charge carriers in real space and their delivery to active catalytic sites at the appropriate overpotentials to initiate redox reactions. Operation of the desired sequence of light harvesting, charge separation, and charge transport events within heterostructures is governed by the thermodynamic energy offsets of the two components and their photoexcited charge-transfer reactivity, which determine the extent to which desirable processes can outcompete unproductive recombination channels. Here, we map energetic offsets and track the dynamics of electron transfer in MoS2/CdS architectures, prepared by interfacing two-dimensional MoS2 nanosheets with CdS quantum dots (QDs), and correlate the observed charge separation to photocatalytic activity in the hydrogen evolution reaction. The energetic offsets between MoS2 and CdS have been determined using hard and soft X-ray photoemission spectroscopy (XPS) in conjunction with density functional theory. A staggered type-II interface is observed, which facilitates electron and hole separation across the interface. Transient absorption spectroscopy measurements demonstrate ultrafast electron injection occurring within sub-5 ps from CdS QDs to MoS2, allowing for creation of a long-lived charge-separated state. The increase of electron concentration in MoS2 is evidenced with the aid of spectroelectrochemical measurements and by identifying the distinctive signatures of electron-phonon scattering in picosecond-resolution transient absorption spectra. Ultrafast charge separation across the type-II interface of MoS2/CdS heterostructures enables a high Faradaic efficiency of ∼99.4 ± 1.2% to be achieved in the hydrogen evolution reaction (HER) and provides a 40-fold increase in the photocatalytic activity of dispersed photocatalysts for H2 generation. The accurate mapping of thermodynamic driving forces and dynamics of charge transfer in these heterostructures suggests a means of engineering ultrafast electron transfer and effective charge separation to design viable photocatalytic architectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA