Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dev Biol ; 11(1)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36976099

RESUMO

The sexual fate of honeybees is determined by the complementary sex determination (CSD) model: heterozygosity at a single locus (the CSD locus) determines femaleness, while hemizygosity or homozygosity at the CSD locus determines maleness. The csd gene encodes a splicing factor that regulates sex-specific splicing of the downstream target gene feminizer (fem), which is required for femaleness. The female mode of fem splicing occurs only when csd is present in the heteroallelic condition. To gain insights into how Csd proteins are only activated under the heterozygous allelic composition, we developed an in vitro assay system to evaluate the activity of Csd proteins. Consistent with the CSD model, the co-expression of two csd alleles, both of which lack splicing activity under the single-allele condition, restored the splicing activity that governs the female mode of fem splicing. RNA immunoprecipitation quantitative PCR analyses demonstrated that the CSD protein was specifically enriched in several exonic regions in the fem pre-mRNA, and enrichment in exons 3a and 5 was significantly greater under the heterozygous allelic composition than the single-allelic condition. However, in most cases csd expression under the monoallelic condition was capable of inducing the female mode of fem splicing contrary to the conventional CSD model. In contrast, repression of the male mode of fem splicing was predominant under heteroallelic conditions. These results were reproduced by real-time PCR of endogenous fem expression in female and male pupae. These findings strongly suggest that the heteroallelic composition of csd may be more important for the repression of the male splicing mode than for the induction of the female splicing mode of the fem gene.

2.
Sci Rep ; 11(1): 18225, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521947

RESUMO

Recent neuroimaging studies suggest that the ventromedial prefrontal cortex (vmPFC) contributes to regulation of emotion. However, the adaptive response of the vmPFC under acute stress is not understood. We used fMRI to analyse brain activity of people viewing and rating the emotional strength of emotional images after acute social stress. Here, we show that the vmPFC is strongly activated by highly emotional images, indicating its involvement in emotional regulation, and that the midbrain is activated as a main effect of stress during the emotional response. vmPFC activation also exhibits individual differences in behavioural scores reflecting individual reactions to stress. Moreover, functional connectivity between the vmPFC and midbrain under stress reflects stress-induced emotion regulation. Those results suggest that the functions of the network including the vmPFC in emotion regulation is affected by stress depending on the individuals' level of reaction to the stress.


Assuntos
Regulação Emocional , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/fisiopatologia , Adulto , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Estresse Psicológico/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA