Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 40(18): 3533-3548, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32253360

RESUMO

Dopaminergic neurons innervate extensive areas of the brain and release dopamine (DA) onto a wide range of target neurons. However, DA release is also precisely regulated. In Drosophila melanogaster brain explant preparations, DA is released specifically onto α3/α'3 compartments of mushroom body (MB) neurons that have been coincidentally activated by cholinergic and glutamatergic inputs. The mechanism for this precise release has been unclear. Here we found that coincidentally activated MB neurons generate carbon monoxide (CO), which functions as a retrograde signal evoking local DA release from presynaptic terminals. CO production depends on activity of heme oxygenase in postsynaptic MB neurons, and CO-evoked DA release requires Ca2+ efflux through ryanodine receptors in DA terminals. CO is only produced in MB areas receiving coincident activation, and removal of CO using scavengers blocks DA release. We propose that DA neurons use two distinct modes of transmission to produce global and local DA signaling.SIGNIFICANCE STATEMENT Dopamine (DA) is needed for various higher brain functions, including memory formation. However, DA neurons form extensive synaptic connections, while memory formation requires highly specific and localized DA release. Here we identify a mechanism through which DA release from presynaptic terminals is controlled by postsynaptic activity. Postsynaptic neurons activated by cholinergic and glutamatergic inputs generate carbon monoxide, which acts as a retrograde messenger inducing presynaptic DA release. Released DA is required for memory-associated plasticity. Our work identifies a novel mechanism that restricts DA release to the specific postsynaptic sites that require DA during memory formation.


Assuntos
Monóxido de Carbono/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Corpos Pedunculados/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Animais Geneticamente Modificados , Aprendizagem da Esquiva/fisiologia , Drosophila melanogaster , Feminino , Masculino , Olfato/fisiologia , Transmissão Sináptica/fisiologia
2.
Sci Rep ; 7(1): 17725, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255174

RESUMO

During olfactory appetitive learning, animals associate an odor, or conditioned stimulus (CS), with an unconditioned stimulus (US), often a sugar reward. This association induces feeding behavior, a conditioned response (CR), upon subsequent exposure to the CS. In this study, we developed a model of this behavior in isolated Drosophila brains. Artificial activation of neurons expressing the Gr5a sugar-responsive gustatory receptor (Gr5a GRNs) induces feeding behavior in starved flies. Consistent with this, we find that in dissected brains, activation of Gr5a GRNs induces Ca2+ transients in motor neurons, MN11 + 12, required for ingestion. Significantly, activation of Gr5a GRNs can substitute for presentation of sugar rewards during olfactory appetitive learning. Similarly, in dissected brains, coincident stimulation of Gr5a GRNs and the antennal lobe (AL), which processes olfactory information, results in increased Ca2+ influx into MN11 + 12 cells upon subsequent AL stimulation. Importantly, olfactory appetitive associations are not formed in satiated flies. Likewise, AL-evoked Ca2+ transients in MN11 + 12 are not produced in ex vivo brains from satiated flies. Our results suggest that a starved/satiated state is maintained in dissected brains, and that this ex vivo system will be useful for identification of neural networks involved in olfactory appetitive learning.


Assuntos
Comportamento Apetitivo/fisiologia , Proteínas de Drosophila/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Condicionamento Clássico/fisiologia , Drosophila/metabolismo , Comportamento Alimentar/psicologia , Neurônios/metabolismo , Odorantes , Córtex Olfatório , Condutos Olfatórios/fisiologia , Recompensa , Olfato , Paladar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA