RESUMO
Bacteria are social organisms that commonly live in dense communities surrounded by a multitude of other species. The competitive and cooperative interactions between these species not only shape the bacterial communities but also influence their susceptibility to antimicrobials. While several studies have shown that mixed-species communities are more tolerant toward antimicrobials than their monospecies counterparts, only limited empirical data are currently available on how interspecies interactions influence resistance development. We here propose a theoretic framework outlining the potential impact of interspecies social behavior on different aspects of resistance development. We identify factors by which interspecies interactions might influence resistance evolution and distinguish between their effect on (a) the emergence of a resistant mutant and (b) the spread of this resistance throughout the population. Our analysis indicates that considering the social life of bacteria is imperative to the rational design of more effective antibiotic treatment strategies with a minimal hazard for resistance development.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Bactérias/genética , Interações MicrobianasRESUMO
While the evolution of antimicrobial resistance is well studied in free-living bacteria, information on resistance development in dense and diverse biofilm communities is largely lacking. Therefore, we explored how the social interactions in a duo-species biofilm composed of the brewery isolates Pseudomonas rhodesiae and Raoultella terrigena influence the adaptation to the broad-spectrum antimicrobial sulfathiazole. Previously, we showed that the competition between these brewery isolates enhances the antimicrobial tolerance of P. rhodesiae. Here, we found that this enhanced tolerance in duo-species biofilms is associated with a strongly increased antimicrobial resistance development in P. rhodesiae. Whereas P. rhodesiae was not able to evolve resistance against sulfathiazole in monospecies conditions, it rapidly evolved resistance in the majority of the duo-species communities. Although the initial presence of R. terrigena was thus required for P. rhodesiae to acquire resistance, the resistance mechanisms did not depend on the presence of R. terrigena. Whole genome sequencing of resistant P. rhodesiae clones showed no clear mutational hot spots. This indicates that the acquired resistance phenotype depends on complex interactions between low-frequency mutations in the genetic background of the strains. We hypothesize that the increased tolerance in duo-species conditions promotes resistance by enhancing the selection of partially resistant mutants and opening up novel evolutionary trajectories that enable such genetic interactions. This hypothesis is reinforced by experimentally excluding potential effects of increased initial population size, enhanced mutation rate, and horizontal gene transfer. Altogether, our observations suggest that the community mode of life and the social interactions therein strongly affect the accessible evolutionary pathways toward antimicrobial resistance.IMPORTANCEAntimicrobial resistance is one of the most studied bacterial properties due to its enormous clinical and industrial relevance; however, most research focuses on resistance development of a single species in isolation. In the present study, we showed that resistance evolution of brewery isolates can differ greatly between single- and mixed-species conditions. Specifically, we observed that the development of antimicrobial resistance in certain species can be significantly enhanced in co-culture as compared to the single-species conditions. Overall, the current study emphasizes the need of considering the within bacterial interactions in microbial communities when evaluating antimicrobial treatments and resistance evolution.
Assuntos
Anti-Infecciosos , Anti-Infecciosos/farmacologia , Biofilmes , Bactérias/genética , Fenótipo , Sulfatiazóis/farmacologia , Antibacterianos/farmacologiaRESUMO
Background: Cryptorchidism is one of the most frequent congenital birth defects in male children and is present in 2-4% of full-term male births. It has several possible health effects including reduced fertility, increased risk for testicular neoplasia, testicular torsion, and psychological consequences. Cryptorchidism is often diagnosed as comorbid; copresent with other diseases. It is also present in clinical picture of several syndromes. However, this field has not been systematically studied. The aim of the present study was to catalog published cases of syndromes which include cryptorchidism in the clinical picture and associated genomic information. Methods: The literature was extracted from Public/Publisher MEDLINE and Web of Science databases, using the keywords including: syndrome, cryptorchidism, undescended testes, loci, and gene. The obtained data was organized in a table according to the previously proposed standardized data format. The results of the study were visually represented using Gephi and karyotype view. Results: Fifty publications had sufficient data for analysis. Literature analysis resulted in 60 genomic loci, associated with 44 syndromes that have cryptorchidism in clinical picture. Genomic loci included 38 protein-coding genes and 22 structural variations containing microdeletions and microduplications. Loci, associated with syndromic cryptorchidism are located on 16 chromosomes. Visualization of retrieved data is presented in a gene-disease network. Conclusions: The study is ongoing and further studies will be needed to develop a complete catalog with the data from upcoming publications. Additional studies will also be needed for revealing of molecular mechanisms associated with syndromic cryptorchidism and revealing complete diseasome network.