Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 1): 186-194, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971957

RESUMO

Here, high-throughput tomography (HiTT), a fast and versatile phase-contrast imaging platform for life-science samples on the EMBL beamline P14 at DESY in Hamburg, Germany, is presented. A high-photon-flux undulator beamline is used to perform tomographic phase-contrast acquisition in about two minutes which is linked to an automated data processing pipeline that delivers a 3D reconstructed data set less than a minute and a half after the completion of the X-ray scan. Combining this workflow with a sophisticated robotic sample changer enables the streamlined collection and reconstruction of X-ray imaging data from potentially hundreds of samples during a beam-time shift. HiTT permits optimal data collection for many different samples and makes possible the imaging of large sample cohorts thus allowing population studies to be attempted. The successful application of HiTT on various soft tissue samples in both liquid (hydrated and also dehydrated) and paraffin-embedded preparations is demonstrated. Furthermore, the feasibility of HiTT to be used as a targeting tool for volume electron microscopy, as well as using HiTT to study plant morphology, is demonstrated. It is also shown how the high-throughput nature of the work has allowed large numbers of `identical' samples to be imaged to enable statistically relevant sample volumes to be studied.


Assuntos
Robótica , Síncrotrons , Raios X , Tomografia Computadorizada por Raios X , Alemanha
2.
J Synchrotron Radiat ; 30(Pt 3): 650-654, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36952235

RESUMO

This work introduces a novel setup for computed tomography of heavy and bulky specimens at the SYRMEP beamline of the Italian synchrotron Elettra. All the key features of the setup are described and the first application to off-center computed tomography scanning of a human chest phantom (approximately 45 kg) as well as the first results for vertical helical acquisitions are discussed.


Assuntos
Síncrotrons , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
3.
Comput Biol Med ; 169: 107947, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211385

RESUMO

Pulmonary fibrosis (PF) is a severe and progressive condition in which the lung becomes scarred over time resulting in pulmonary function impairment. Classical histopathology remains an important tool for micro-structural tissue assessment in the diagnosis of PF. A novel workflow based on spatial correlated propagation-based phase-contrast micro computed tomography (PBI-microCT), atomic force microscopy (AFM) and histopathology was developed and applied to two different preclinical mouse models of PF - the commonly used and well characterized Bleomycin-induced PF and a novel mouse model for progressive PF caused by conditional Nedd4-2 KO. The aim was to integrate structural and mechanical features from hallmarks of fibrotic lung tissue remodeling. PBI-microCT was used to assess structural alteration in whole fixed and paraffin embedded lungs, allowing for identification of fibrotic foci within the 3D context of the entire organ and facilitating targeted microtome sectioning of planes of interest for subsequent histopathology. Subsequently, these sections of interest were subjected to AFM to assess changes in the local tissue stiffness of previously identified structures of interest. 3D whole organ analysis showed clear morphological differences in 3D tissue porosity between transient and progressive PF and control lungs. By integrating the results obtained from targeted AFM analysis, it was possible to discriminate between the Bleomycin model and the novel conditional Nedd4-2 KO model using agglomerative cluster analysis. As our workflow for 3D spatial correlation of PBI, targeted histopathology and subsequent AFM is tailored around the standard procedure of formalin-fixed paraffin-embedded (FFPE) tissue specimens, it may be a powerful tool for the comprehensive tissue assessment beyond the scope of PF and preclinical research.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Fibrose Pulmonar/patologia , Microtomografia por Raio-X/métodos , Microscopia de Força Atômica , Pulmão/anatomia & histologia , Bleomicina
4.
Sci Rep ; 13(1): 18637, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903864

RESUMO

Lung fibrosis (LF) is a chronic progressive, incurable, and debilitating condition of the lung, which is associated with different lung disease. Treatment options are still sparse. Nintedanib, an oral tyrosine kinase inhibitor, significantly slows the LF progression. However, there is a strong need of further research and the development of novel therapies. In this study, we used a correlative set-up that combines X-ray based lung function (XLF) with microCT and whole body plethysmography (WBP) for a comprehensive functional and structural evaluation of lung fibrosis (LF) as well as for monitoring response to orally administered Nintedanib in the mouse model of bleomycin induced LF. The decline in lung function as early as one week after intratracheal bleomycin instillation was reliably detected by XLF, revealing the lowest decay rate in the LF mice compared to healthy ones. Simultaneously performed microCT and WBP measurements corroborated XLF findings by exhibiting reduced lung volume [Formula: see text] and tidal volume [Formula: see text]. In LF mice XLF also revealed profound improvement in lung function one week after Nintedanib treatment. This positive response to Nintedanib therapy was further substantiated by microCT and WBP measurements which also showed significantly improved [Formula: see text] and [Formula: see text] in the Nintedanib treated mice. By comparing the XLF data to structural features assessing the extent of fibrosis obtained by ex-vivo high-resolution synchrotron radiation-based imaging and classical histology we demonstrate that: (1) a simple low dose x-ray measurement like XLF is sensitive enough to pick up treatment response, (2) Nintedanib treatment successfully improved lung function in a bleomycin induced LF mouse model and (3) differences between the fully restored lung function and the partially reduced fibrotic burden compared to healthy and untreated mice. The presented analysis pipeline underlines the importance of a combined functional and anatomical readout to reliably measure treatment response and could easily be adapted to other preclinical lung disease models.


Assuntos
Fibrose Pulmonar Idiopática , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/tratamento farmacológico , Raios X , Pulmão/patologia , Fibrose , Modelos Animais de Doenças , Bleomicina/uso terapêutico , Fibrose Pulmonar Idiopática/patologia
5.
Eur Radiol Exp ; 7(1): 76, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049615

RESUMO

BACKGROUND: Diagnostic accuracy of endomyocardial biopsy could improve if clinically safe magnetic resonance (MR)-compatible bioptomes were available. We explored two novel MR-compatible cardiac bioptomes for performance, safety, and clinical viability, employing in vivo minipig trials and phase-contrast synchrotron radiation computed microtomography (SRµCT). METHODS: Analysis of ex vivo obtained pig endomyocardial biopsies was performed using phase-contrast SRµCT and conventional two-dimensional histology. The technical performance was evaluated by measuring volume, inner and outer integrities, compression, and histological diagnostic value in 3 sets (6 per set) of biopsies for each experimental bioptome. The bioptomes were tested in vivo in 3 healthy minipigs per bioptome. The clinical feasibility was evaluated by procedural and cutting success as well as histological diagnostic value. RESULTS: The bioptome with the 'grind-grind' design achieved similar values to control in compression (p = 0.822), inner (p = 0.628), and outer (p = 0.507), integrities ex vivo. It showed a better performance in the in vivo real-time MRI setting demonstrating a higher cutting success (91.7%) than the 'grind-anvil' (86.2%) design. In both ex vivo and in vivo evaluations, the 'grind-grind' design displayed sufficient diagnostic value (83% and 95%). The 'grind-anvil' design showed adequate diagnostic value both ex vivo and in vivo (78% and 87.5%) but was not comparable to control according to the three-dimensional (3D) analysis. CONCLUSION: A novel MR-compatible bioptome was identified as plausible in a clinical setting. Additionally, SRµCT and subsequent 3D structural analysis could be valuable in the label-free investigation of myocardial tissue at a micrometer level. RELEVANCE STATEMENT: Implementation of MR-guided biopsy can improve animal studies on structural myocardial changes at any point in an experimental setup. With further improvements in guiding catheters, MR-guided biopsy, using the new bioptome, has a potential to increase quality and diagnostic accuracy in patients both with structural and inflammatory cardiomyopathies. KEY POINTS: • Novel MR-compatible bioptomes show promise for a clinical application. • SRµCT enabled detailed analysis of endomyocardial biopsies. • The bioptomes showed adequate in vivo performance without major complications.


Assuntos
Coração , Imageamento por Ressonância Magnética , Animais , Humanos , Suínos , Porco Miniatura , Coração/diagnóstico por imagem , Biópsia/métodos , Espectroscopia de Ressonância Magnética
6.
Sci Rep ; 13(1): 18479, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898676

RESUMO

Hard-tissue histology-the analysis of thin two-dimensional (2D) sections-is hampered by the opaque nature of most biological specimens, especially bone. Therefore, the cutting process cannot be assigned to regions of interest. In addition, the applied cutting-grinding method is characterized by significant material loss. As a result, relevant structures might be missed or destroyed, and 3D features can hardly be evaluated. Here, we present a novel workflow, based on conventual microCT scans of the specimen prior to the cutting process, to be used for the analysis of 3D structural features and for directing the sectioning process to the regions of interest. 3D printed fiducial markers, embedded together with the specimen in resin, are utilized to retrospectively register the obtained 2D histological images into the 3D anatomical context. This not only allows to identify the cutting position, but also enables the co-registration of the cell and extracellular matrix morphological analysis to local 3D information obtained from the microCT data. We have successfully applied our new approach to assess hard-tissue specimens of different species. After matching the predicted microCT cut plane with the histology image, we validated a high accuracy of the registration process by computing quality measures namely Jaccard and Dice similarity coefficients achieving an average score of 0.90 ± 0.04 and 0.95 ± 0.02, respectively. Thus, we believe that the novel, easy to implement correlative imaging approach holds great potential for improving the reliability and diagnostic power of classical hard-tissue histology.


Assuntos
Imageamento Tridimensional , Impressão Tridimensional , Microtomografia por Raio-X , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos
7.
Sci Rep ; 12(1): 13299, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918439

RESUMO

Retrospective gating (RG) is a well established technique in preclinical computed tomography (CT) to assess 3D morphology of the lung. In RG additional angular projections are recorded typically by performing multiple rotations. Consequently, the projections are sorted according to the expansion state of the chest and those sets are then reconstructed separately. Thus, the breathing motion artefacts are suppressed at a cost of strongly elevated X-ray dose levels. Here we propose to use the entire raw data to assess respiratory motion in addition to retrospectively gated 3D reconstruction that visualize anatomical structures of the lung. Using this RG based X-ray respiratory motion measurement approach, which will be referred to as RG based X-ray lung function measurement (rgXLF) on the example of the mdx mouse model of Duchenne muscle dystrophy (mdx) we accurately obtained both the 3D anatomical morphology of the lung and the thoracic bones as well as functional temporal parameters of the lung. Thus, rgXLF will remove the necessity for separate acquisition procedures by being able to reproduce comparable results to the previously established planar X-ray based lung function measurement approach in a single low dose CT scan.


Assuntos
Pulmão , Respiração , Animais , Pulmão/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos mdx , Estudos Retrospectivos , Microtomografia por Raio-X
8.
Cells ; 11(5)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35269540

RESUMO

Duchenne muscular dystrophy (DMD) is the most common x-chromosomal inherited dystrophinopathy which leads to progressive muscle weakness and a premature death due to cardiorespiratory dysfunction. The mdx mouse lacks functional dystrophin protein and has a comparatively human-like diaphragm phenotype. To date, diaphragm function can only be inadequately mapped in preclinical studies and a simple reliable translatable method of tracking the severity of the disease still lacks. We aimed to establish a sensitive, reliable, harmless and easy way to assess the effects of respiratory muscle weakness and subsequent irregularity in breathing pattern. Optical respiratory dynamics tracking (ORDT) was developed utilising a camera to track the movement of paper markers placed on the thoracic-abdominal region of the mouse. ORDT successfully distinguished diseased mdx phenotype from healthy controls by measuring significantly higher expiration constants (k) in mdx mice compared to wildtype (wt), which were also observed in the established X-ray based lung function (XLF). In contrast to XLF, with ORDT we were able to distinguish distinct fast and slow expiratory phases. In mdx mice, a larger part of the expiratory marker displacement was achieved in this initial fast phase as compared to wt mice. This phenomenon could not be observed in the XLF measurements. We further validated the simplicity and reliability of our approach by demonstrating that it can be performed using free-hand smartphone acquisition. We conclude that ORDT has a great preclinical potential to monitor DMD and other neuromuscular diseases based on changes in the breathing patterns with the future possibility to track therapy response.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Diafragma , Distrofina/genética , Camundongos , Camundongos Endogâmicos mdx , Debilidade Muscular , Distrofia Muscular de Duchenne/genética , Reprodutibilidade dos Testes
9.
Radiol Res Pract ; 2022: 6765895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408297

RESUMO

Classical analysis of biological samples requires the destruction of the tissue's integrity by cutting or grinding it down to thin slices for (Immuno)-histochemical staining and microscopic analysis. Despite high specificity, encoded in the stained 2D section of the whole tissue, the structural information, especially 3D information, is limited. Computed tomography (CT) or magnetic resonance imaging (MRI) scans performed prior to sectioning in combination with image registration algorithms provide an opportunity to regain access to morphological characteristics as well as to relate histological findings to the 3D structure of the local tissue environment. This review provides a summary of prevalent literature addressing the problem of multimodal coregistration of hard- and soft-tissue in microscopy and tomography. Grouped according to the complexity of the dimensions, including image-to-volume (2D ⟶ 3D), image-to-image (2D ⟶ 2D), and volume-to-volume (3D ⟶ 3D), selected currently applied approaches are investigated by comparing the method accuracy with respect to the limiting resolution of the tomography. Correlation of multimodal imaging could position itself as a useful tool allowing for precise histological diagnostic and allow the a priori planning of tissue extraction like biopsies.

10.
Sci Rep ; 11(1): 10846, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035350

RESUMO

Although X-ray based 3D virtual histology is an emerging tool for the analysis of biological tissue, it falls short in terms of specificity when compared to conventional histology. Thus, the aim was to establish a novel approach that combines 3D information provided by microCT with high specificity that only (immuno-)histochemistry can offer. For this purpose, we developed a software frontend, which utilises an elastic transformation technique to accurately co-register various histological and immunohistochemical stainings with free propagation phase contrast synchrotron radiation microCT. We demonstrate that the precision of the overlay of both imaging modalities is significantly improved by performing our elastic registration workflow, as evidenced by calculation of the displacement index. To illustrate the need for an elastic co-registration approach we examined specimens from a mouse model of breast cancer with injected metal-based nanoparticles. Using the elastic transformation pipeline, we were able to co-localise the nanoparticles to specifically stained cells or tissue structures into their three-dimensional anatomical context. Additionally, we performed a semi-automated tissue structure and cell classification. This workflow provides new insights on histopathological analysis by combining CT specific three-dimensional information with cell/tissue specific information provided by classical histology.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Nanopartículas Metálicas/administração & dosagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Animais , Linhagem Celular Tumoral , Técnicas de Imagem por Elasticidade , Feminino , Camundongos , Transplante de Neoplasias , Sensibilidade e Especificidade , Software , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA