Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Pharmacol Biochem Behav ; 225: 173556, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37087059

RESUMO

Pharmacological effects of ketamine may affect homeostatic sleep regulation via slow wave related mechanisms. In the present study effects of ketamine applied at anesthetic dose (80 mg/kg) were tested on neocortical electric activity for 24 h in freely moving rats. Ketamine effects were compared to changes during control (saline) injections and after 6 h gentle handling sleep deprivation (SD). As circadian factors may mask drug effects, an illumination protocol consisting of short light-dark cycles was applied. Ketamine application induced a short hypnotic stage with characteristic slow cortical rhythm followed by a long-lasting hyperactive waking resulting pharmacological SD. Coherence analysis indicated an increased level of local synchronization in broad local field potential frequency ranges during hyperactive waking but not during natural- or SD-evoked waking. Both slow wave sleep and rapid eye movement sleep were replaced after the termination of the ketamine effect. Our results show that both ketamine-induced hypnotic state and hyperactive waking can induce homeostatic sleep pressure with comparable intensity as 6 h SD, but ketamine-induced waking was different compared to the SD-evoked one. Both types of waking stages were different compared to spontaneous waking but all three types of wakefulness can engage the homeostatic sleep regulating machinery to generate sleep pressure dissipated by subsequent sleep. Current-source density analysis of the slow waves showed that cortical transmembrane currents were stronger during ketamine-induced hypnotic stage compared to both sleep replacement after SD and ketamine application, but intracortical activation patterns showed only quantitative differences. These findings may hold some translational value for human medical ketamine applications aiming the treatment of depression-associated sleep problems, which can be alleviated by the homeostatic sleep effect of the drug without the need for an intact circadian regulation.


Assuntos
Ketamina , Humanos , Ratos , Animais , Ketamina/farmacologia , Ritmo Circadiano/fisiologia , Eletroencefalografia/métodos , Sono , Privação do Sono , Vigília
2.
iScience ; 26(1): 105814, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36636356

RESUMO

Basal forebrain cholinergic neurons (BFCNs) play an important role in associative learning, suggesting that BFCNs may participate in processing stimuli that predict future outcomes. However, the impact of outcome probabilities on BFCN activity remained elusive. Therefore, we performed bulk calcium imaging and recorded spiking of identified cholinergic neurons from the basal forebrain of mice performing a probabilistic Pavlovian cued outcome task. BFCNs responded more to sensory cues that were often paired with reward. Reward delivery also activated BFCNs, with surprising rewards eliciting a stronger response, whereas punishments evoked uniform positive-going responses. We propose that BFCNs differentially weigh predictions of positive and negative reinforcement, reflecting divergent relative salience of forecasting appetitive and aversive outcomes, partially explained by a simple reinforcement learning model of a valence-weighed unsigned prediction error. Finally, the extent of cue-driven cholinergic activation predicted subsequent decision speed, suggesting that the expectation-gated cholinergic firing is instructive to reward-seeking behaviors.

3.
Cell Rep ; 40(5): 111149, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926456

RESUMO

Episodic learning and memory retrieval are dependent on hippocampal theta oscillation, thought to rely on the GABAergic network of the medial septum (MS). To test how this network achieves theta synchrony, we recorded MS neurons and hippocampal local field potential simultaneously in anesthetized and awake mice and rats. We show that MS pacemakers synchronize their individual rhythmicity frequencies, akin to coupled pendulum clocks as observed by Huygens. We optogenetically identified them as parvalbumin-expressing GABAergic neurons, while MS glutamatergic neurons provide tonic excitation sufficient to induce theta. In accordance, waxing and waning tonic excitation is sufficient to toggle between theta and non-theta states in a network model of single-compartment inhibitory pacemaker neurons. These results provide experimental and theoretical support to a frequency-synchronization mechanism for pacing hippocampal theta, which may serve as an inspirational prototype for synchronization processes in the central nervous system from Nematoda to Arthropoda to Chordate and Vertebrate phyla.


Assuntos
Hipocampo , Ritmo Teta , Potenciais de Ação/fisiologia , Animais , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Camundongos , Parvalbuminas/metabolismo , Ratos , Ritmo Teta/fisiologia
4.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35201268

RESUMO

Microglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans. Surprisingly, the absence of microglia or blockade of microglial P2Y12 receptor (P2Y12R) substantially impairs neurovascular coupling in mice, which is reiterated by chemogenetically induced microglial dysfunction associated with impaired ATP sensitivity. Hypercapnia induces rapid microglial calcium changes, P2Y12R-mediated formation of perivascular phylopodia, and microglial adenosine production, while depletion of microglia reduces brain pH and impairs hypercapnia-induced vasodilation. Microglial actions modulate vascular cyclic GMP levels but are partially independent of nitric oxide. Finally, microglial dysfunction markedly impairs P2Y12R-mediated cerebrovascular adaptation to common carotid artery occlusion resulting in hypoperfusion. Thus, our data reveal a previously unrecognized role for microglia in CBF regulation, with broad implications for common neurological diseases.


Assuntos
Circulação Cerebrovascular/fisiologia , Microglia/fisiologia , Acoplamento Neurovascular/fisiologia , Receptores Purinérgicos/fisiologia , Adulto , Idoso , Animais , Encéfalo/fisiologia , Sinalização do Cálcio/fisiologia , Doenças das Artérias Carótidas/fisiopatologia , Potenciais Evocados/fisiologia , Feminino , Humanos , Hipercapnia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Purinérgicos P2Y12/fisiologia , Vasodilatação/fisiologia , Vibrissas/inervação
5.
Nat Commun ; 11(1): 4686, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943633

RESUMO

Electrophysiology provides a direct readout of neuronal activity at a temporal precision only limited by the sampling rate. However, interrogating deep brain structures, implanting multiple targets or aiming at unusual angles still poses significant challenges for operators, and errors are only discovered by post-hoc histological reconstruction. Here, we propose a method combining the high-resolution information about bone landmarks provided by micro-CT scanning with the soft tissue contrast of the MRI, which allowed us to precisely localize electrodes and optic fibers in mice in vivo. This enables arbitrating the success of implantation directly after surgery with a precision comparable to gold standard histology. Adjustment of the recording depth with micro-drives or early termination of unsuccessful experiments saves many working hours, and fast 3-dimensional feedback helps surgeons avoid systematic errors. Increased aiming precision enables more precise targeting of small or deep brain nuclei and multiple targeting of specific cortical or hippocampal layers.


Assuntos
Encéfalo/diagnóstico por imagem , Eletrodos Implantados , Processamento de Imagem Assistida por Computador/métodos , Fibras Ópticas , Microtomografia por Raio-X/métodos , Animais , Comportamento Animal , Encéfalo/patologia , Mapeamento Encefálico , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/cirurgia , Técnicas Histológicas/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Silício , Técnicas Estereotáxicas
6.
Front Syst Neurosci ; 12: 18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867383

RESUMO

Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.

7.
Front Neural Circuits ; 11: 31, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496401

RESUMO

Some neurons are more equal than others: neuroscience relies heavily on the notion that there is a division of labor among different subtypes of brain cells. Therefore, it is important to recognize groups of neurons that participate in the same computation or share similar tasks. However, what the best ways are to identify such collections is not yet clear. Here, we argue that monitoring the activity of genetically defined cell types will lead to new insights about neural mechanisms and improve our understanding of disease vulnerability. Through highlighting how central cholinergic neurons encode reward and punishment that can be captured by a unified framework of reinforcement surprise, we hope to provide an instructive example of how studying a genetically defined cell type may further our understanding of neural function.


Assuntos
Sistema Nervoso Central/citologia , Neurônios Colinérgicos/fisiologia , Animais , Cognição/fisiologia , Humanos , Neurônios/classificação , Neurônios/fisiologia , Optogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA