Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Archaeol Anthropol Sci ; 13(1): 24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33520004

RESUMO

Given their strong affinity for the skeleton, trace elements are often stored in bones and teeth long term. Diet, geography, health, disease, social status, activity, and occupation are some factors which may cause differential exposure to, and uptake of, trace elements, theoretically introducing variability in their concentrations and/or ratios in the skeleton. Trace element analysis of bioarchaeological remains has the potential, therefore, to provide rich insights into past human lifeways. This review provides a historical overview of bioarchaeological trace element analysis and comments on the current state of the discipline by highlighting approaches with growing momentum. Popularity for the discipline surged following preliminary studies in the 1960s to 1970s that demonstrated the utility of strontium (Sr) as a dietary indicator. During the 1980s, Sr/Ca ratio and multi-element studies were commonplace in bioarchaeology, linking trace elements with dietary phenomena. Interest in using trace elements for bioarchaeological inferences waned following a period of critiques in the late 1980s to 1990s that argued the discipline failed to account for diagenesis, simplified complex element uptake and regulation processes, and used several unsuitable elements for palaeodietary reconstruction (e.g. those under homeostatic regulation, those without a strong affinity for the skeleton). In the twenty-first century, trace element analyses have been primarily restricted to Sr and lead (Pb) isotope analysis and the study of toxic trace elements, though small pockets of bioarchaeology have continued to analyse multiple elements. Techniques such as micro-sampling, element mapping, and non-traditional stable isotope analysis have provided novel insights which hold the promise of helping to overcome limitations faced by the discipline. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12520-020-01262-4.

2.
Sci Total Environ ; 790: 148144, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34111788

RESUMO

Bones represent a valuable biological archive of environmental lead (Pb) exposure for modern and archaeological populations. Synchrotron radiation X-ray fluorescence imaging (SR-XFI) generates maps of Pb in bone on a microstructural scale, potentially providing insights into an individual's history of Pb exposure and, in the context of archaeological bone, the biogenic or diagenetic nature of its uptake. The aims of this study were to (1) examine biogenic spatial patterns for Pb from bone samples of modern cadavers compared with patterns observed archaeologically, and (2) test the hypothesis that there are spatial differences in the distribution of Pb for diagenetic and biogenic modes of uptake in bone. To address these aims, this study used inductively coupled plasma-mass spectrometry (ICP-MS) and SR-XFI on unaltered and experimentally altered cadaveric bone samples (University of Saskatchewan, Saskatoon, SK) and archaeological bone samples from 18th to 19th century archaeological sites from Antigua and Lithuania. Bone concentrations of modern individuals are relatively low compared to those of archaeological individuals. SR-XFI results provide insights into modern Saskatchewan Pb exposure with some samples demonstrating a pattern of relatively low Pb exposure with higher levels of Pb exposure occurring in bone structures of a relatively older age that formed earlier in life, likely during the era of leaded gasoline (pre-1980s), and other samples demonstrating a pattern of fairly consistent, low-level exposure. Results support hypotheses for the spatial distribution of Pb corresponding to biogenic vs. diagenetic uptake. Diagenetic Pb is mainly confined to the periosteal surface of each sample with some enrichment of cracks and sub-periosteal canals. This may be useful in the future for differentiating diagenetic from biogenic Pb accumulation, analyzing environmental contamination, and informing sampling strategies in archaeological or fossil bone.


Assuntos
Chumbo , Síncrotrons , Idoso , Arqueologia , Humanos , Imagem Óptica , Raios X
3.
PLoS One ; 13(8): e0202983, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138435

RESUMO

In the summer of 1845, under the command of Sir John Franklin, 128 officers and men aboard Royal Navy ships HMS Erebus and HMS Terror sailed into Lancaster Sound and entered the waters of Arctic North America. The goal of this expedition was to complete the discovery of a northwest passage by navigating the uncharted area between Barrow Strait and Simpson Strait. Franklin and his crew spent the first winter at Beechey Island, where three crewmen died and were buried. In September 1846, the ships became stranded in ice off the northwest coast of King William Island, where they remained until April 1848. At that time, the crew, reduced to 105, deserted the ships and retreated south along the island's western and southern shores in a desperate attempt to reach the mainland and via the Back River, to obtain aid at a Hudson's Bay Company Post. Sadly, not one individual survived. Previous analyses of bone, hair, and soft tissue samples from expedition remains found that crewmembers' tissues contained elevated lead (Pb) levels, suggesting that Pb poisoning may have contributed to their demise; however, questions remain regarding the timing and degree of exposure and, ultimately, the extent to which the crewmembers may have been impacted. To address this historical question, we investigated three hypotheses. First, if elevated Pb exposure was experienced by the crew during the expedition, we hypothesized that those sailors who survived longer (King William Island vs. Beechey Island) would exhibit more extensive uptake of Pb in their bones and vice versa. Second, we hypothesized that Pb would be elevated in bone microstructural features forming at or near the time of death compared with older tissue. Finally, if Pb exposure played a significant role in the failure of the expedition we hypothesized that bone samples would exhibit evidence of higher and more sustained uptake of Pb than that of a contemporary comparator naval population from the 19th century. To test these hypotheses, we analyzed bone and dental remains of crew members and compared them against samples derived from the Royal Navy cemetery in Antigua. Synchrotron-based high resolution confocal X-ray fluorescence imaging was employed to visualize Pb distribution within bone and tooth microstructures at the micro scale. The data did not support our first hypothesis as Pb distribution within the samples from the two different sites was similar. Evidence of Pb within skeletal microstructural features formed near the time of death lent support to our second hypothesis but consistent evidence of a marked elevation in Pb levels was lacking. Finally, the comparative analysis with the Antigua samples did not support the hypothesis that the Franklin sailors were exposed to an unusually high level of Pb for the time period. Taken all together our skeletal microstructural results do not support the conclusion that Pb played a pivotal role in the loss of Franklin and his crew.


Assuntos
Osso e Ossos/química , Exposição Ambiental/análise , Expedições , Intoxicação por Chumbo/diagnóstico , Chumbo/análise , Dente/química , Causas de Morte , Espectrometria por Raios X
4.
Phys Med ; 32(12): 1765-1770, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27515551

RESUMO

PURPOSE: To evaluate the feasibility of using non-radioactive barium as a bone tracer for detection with synchrotron spectral K-edge subtraction (SKES) technique. METHODS: Male rats of 1-month old (i.e., developing skeleton) and 8-month old (i.e., skeletally mature) were orally dosed with low dose of barium chloride (33mg/kg/day Ba2+) for 4weeks. The fore and hind limbs were dissected for imaging in projection and computed tomography modes at 100µm and 52µm pixel sizes. The SKES method utilizes a single bent Laue monochromator to prepare a 550eV energy spectrum to encompass the K-edge of barium (37.441keV), for collecting both 'above' and 'below' the K-edge data sets in a single scan. RESULTS: The SKES has a very good focal size, thus limits the 'crossover' and motion artifacts. In juvenile rats, barium was mostly incorporated in the areas of high bone turnover such as at the growth plate and the trabecular surfaces, but also in the cortical bone as the animals were growing at the time of tracer administration. However, the adults incorporated approximately half the concentration and mainly in the areas where bone remodeling was predominant and occasionally in the periosteal and endosteal layers of the diaphyseal cortical bone. CONCLUSIONS: The presented methodology is simple to implement and provides both structural and functional information, after labeling with barium, on bone micro-architecture and thus has great potential for in vivo imaging of pre-clinical animal models of musculoskeletal diseases to better understand their mechanisms and to evaluate the efficacy of pharmaceuticals.


Assuntos
Bário/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Técnica de Subtração , Animais , Transporte Biológico , Estudos de Viabilidade , Masculino , Ratos , Ratos Sprague-Dawley , Síncrotrons
5.
Phys Med Biol ; 61(13): 5077-5088, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27320962

RESUMO

Bone is a dynamic tissue which exhibits complex patterns of growth as well as continuous internal turnover (i.e. remodeling). Tracking such changes can be challenging and thus a high resolution imaging-based tracer would provide a powerful new perspective on bone tissue dynamics. This is, particularly so if such a tracer can be detected in 3D. Previously, strontium has been demonstrated to be an effective tracer which can be detected by synchrotron-based dual energy K-edge subtraction (KES) imaging in either 2D or 3D. The use of strontium is, however, limited to very small sample thicknesses due to its low K-edge energy (16.105 keV) and thus is not suitable for in vivo application. Here we establish proof-of-principle for the use of barium as an alternative tracer with a higher K-edge energy (37.441 keV), albeit for ex vivo imaging at the moment, which enables application in larger specimens and has the potential to be developed for in vivo imaging of preclinical animal models. New bone formation within growing rats in 2D and 3D was demonstrated at the Biomedical Imaging and Therapy bending magnet (BMIT-BM) beamline of the Canadian Light Source synchrotron. Comparative x-ray fluorescence imaging confirmed those patterns of uptake detected by KES. This initial work provides a platform for the further development of this tracer and its exploration of applications for in vivo development.

6.
PLoS One ; 6(2): e16864, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21359221

RESUMO

Helicobacter pylori is a gram-negative bacterium that colonizes the stomach of nearly half of the world's population. Genotypic characterization of H. pylori strains involves the analysis of virulence-associated genes, such as vacA, which has multiple alleles. Previous phylogenetic analyses have revealed a connection between modern H. pylori strains and the movement of ancient human populations. In this study, H. pylori DNA was amplified from the stomach tissue of the Kwäday Dän Ts'ìnchi individual. This ancient individual was recovered from the Samuel Glacier in Tatshenshini-Alsek Park, British Columbia, Canada on the traditional territory of the Champagne and Aishihik First Nations and radiocarbon dated to a timeframe of approximately AD 1670 to 1850. This is the first ancient H. pylori strain to be characterized with vacA sequence data. The Tatshenshini H. pylori strain has a potential hybrid vacA m2a/m1d middle (m) region allele and a vacA s2 signal (s) region allele. A vacA s2 allele is more commonly identified with Western strains, and this suggests that European strains were present in northwestern Canada during the ancient individual's time. Phylogenetic analysis indicated that the vacA m1d region of the ancient strain clusters with previously published novel Native American strains that are closely related to Asian strains. This indicates a past connection between the Kwäday Dän Ts'ìnchi individual and the ancestors who arrived in the New World thousands of years ago.


Assuntos
DNA Bacteriano/análise , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Camada de Gelo/microbiologia , Autopsia , Sequência de Bases , Canadá , Infecções por Helicobacter/história , Helicobacter pylori/classificação , Helicobacter pylori/isolamento & purificação , História Antiga , Humanos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Estômago/microbiologia , Estômago/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA