Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(43): 26915-26925, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046644

RESUMO

Zoonotic coronaviruses represent an ongoing threat, yet the myriads of circulating animal viruses complicate the identification of higher-risk isolates that threaten human health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered, highly pathogenic virus that likely evolved from closely related HKU2 bat coronaviruses, circulating in Rhinolophus spp. bats in China and elsewhere. As coronaviruses cause severe economic losses in the pork industry and swine are key intermediate hosts of human disease outbreaks, we synthetically resurrected a recombinant virus (rSADS-CoV) as well as a derivative encoding tomato red fluorescent protein (tRFP) in place of ORF3. rSADS-CoV replicated efficiently in a variety of continuous animal and primate cell lines, including human liver and rectal carcinoma cell lines. Of concern, rSADS-CoV also replicated efficiently in several different primary human lung cell types, as well as primary human intestinal cells. rSADS-CoV did not use human coronavirus ACE-2, DPP4, or CD13 receptors for docking and entry. Contemporary human donor sera neutralized the group I human coronavirus NL63, but not rSADS-CoV, suggesting limited human group I coronavirus cross protective herd immunity. Importantly, remdesivir, a broad-spectrum nucleoside analog that is effective against other group 1 and 2 coronaviruses, efficiently blocked rSADS-CoV replication in vitro. rSADS-CoV demonstrated little, if any, replicative capacity in either immune-competent or immunodeficient mice, indicating a critical need for improved animal models. Efficient growth in primary human lung and intestinal cells implicate SADS-CoV as a potential higher-risk emerging coronavirus pathogen that could negatively impact the global economy and human health.


Assuntos
Alphacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Suscetibilidade a Doenças/virologia , Replicação Viral , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Alphacoronavirus/genética , Alphacoronavirus/crescimento & desenvolvimento , Animais , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/transmissão , Expressão Gênica , Especificidade de Hospedeiro , Humanos , Proteínas Luminescentes/genética , Camundongos , Células Vero , Replicação Viral/efeitos dos fármacos
2.
PLoS Comput Biol ; 15(9): e1007241, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527878

RESUMO

High-throughput multi-omics studies and corresponding network analyses of multi-omic data have rapidly expanded their impact over the last 10 years. As biological features of different types (e.g. transcripts, proteins, metabolites) interact within cellular systems, the greatest amount of knowledge can be gained from networks that incorporate multiple types of -omic data. However, biological and technical sources of variation diminish the ability to detect cross-type associations, yielding networks dominated by communities comprised of nodes of the same type. We describe here network building methods that can maximize edges between nodes of different data types leading to integrated networks, networks that have a large number of edges that link nodes of different-omic types (transcripts, proteins, lipids etc). We systematically rank several network inference methods and demonstrate that, in many cases, using a random forest method, GENIE3, produces the most integrated networks. This increase in integration does not come at the cost of accuracy as GENIE3 produces networks of approximately the same quality as the other network inference methods tested here. Using GENIE3, we also infer networks representing antibody-mediated Dengue virus cell invasion and receptor-mediated Dengue virus invasion. A number of functional pathways showed centrality differences between the two networks including genes responding to both GM-CSF and IL-4, which had a higher centrality value in an antibody-mediated vs. receptor-mediated Dengue network. Because a biological system involves the interplay of many different types of molecules, incorporating multiple data types into networks will improve their use as models of biological systems. The methods explored here are some of the first to specifically highlight and address the challenges associated with how such multi-omic networks can be assembled and how the greatest number of interactions can be inferred from different data types. The resulting networks can lead to the discovery of new host response patterns and interactions during viral infection, generate new hypotheses of pathogenic mechanisms and confirm mechanisms of disease.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Algoritmos , Bases de Dados Genéticas , Interações Hospedeiro-Patógeno , Humanos , Neoplasias/genética , Neoplasias/metabolismo
3.
J Infect Dis ; 220(2): 219-227, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30895307

RESUMO

BACKGROUND: Dengue virus is an emerging mosquito-borne flavivirus responsible for considerable morbidity and mortality worldwide. The Division of Intramural Research, National Institute of Allergy and Infectious Diseases of the US National Institutes of Health (NIH) has developed live attenuated vaccines to each of the 4 serotypes of dengue virus (DENV1-4). While overall levels of DENV neutralizing antibodies (nAbs) in humans have been correlated with protection, these correlations vary depending on DENV serotype, prevaccination immunostatus, age, and study site. By combining both the level and molecular specificity of nAbs to each serotype, it may be possible to develop more robust correlates that predict long-term outcome. METHODS: Using depletions and recombinant chimeric epitope transplant DENVs, we evaluate the molecular specificity and mapped specific epitopes and antigenic regions targeted by vaccine-induced nAbs in volunteers who received the NIH monovalent vaccines against each DENV serotype. RESULTS: After monovalent vaccination, subjects developed high levels of nAbs that mainly targeted epitopes that are unique (type-specific) to each DENV serotype. The DENV1, 2, and 4 monovalent vaccines induced type-specific nAbs directed to quaternary structure envelope epitopes known to be targets of strongly neutralizing antibodies induced by wild-type DENV infections. CONCLUSIONS: Our results reported here on the molecular specificity of NIH vaccine-induced antibodies enable new strategies, beyond the absolute levels of nAbs, for determining correlates and mechanisms of protective immunity.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Epitopos/imunologia , Sequência de Aminoácidos , Dengue/virologia , Mapeamento de Epitopos/métodos , Humanos , National Institutes of Health (U.S.) , Sorogrupo , Estados Unidos , Vacinação/métodos , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/imunologia
4.
Proc Natl Acad Sci U S A ; 113(11): 3048-53, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976607

RESUMO

Outbreaks from zoonotic sources represent a threat to both human disease as well as the global economy. Despite a wealth of metagenomics studies, methods to leverage these datasets to identify future threats are underdeveloped. In this study, we describe an approach that combines existing metagenomics data with reverse genetics to engineer reagents to evaluate emergence and pathogenic potential of circulating zoonotic viruses. Focusing on the severe acute respiratory syndrome (SARS)-like viruses, the results indicate that the WIV1-coronavirus (CoV) cluster has the ability to directly infect and may undergo limited transmission in human populations. However, in vivo attenuation suggests additional adaptation is required for epidemic disease. Importantly, available SARS monoclonal antibodies offered success in limiting viral infection absent from available vaccine approaches. Together, the data highlight the utility of a platform to identify and prioritize prepandemic strains harbored in animal reservoirs and document the threat posed by WIV1-CoV for emergence in human populations.


Assuntos
Quirópteros/virologia , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronaviridae/virologia , Coronaviridae/patogenicidade , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Células Cultivadas , Chlorocebus aethiops , Coronaviridae/genética , Coronaviridae/imunologia , Coronaviridae/isolamento & purificação , Coronaviridae/fisiologia , Infecções por Coronaviridae/prevenção & controle , Infecções por Coronaviridae/transmissão , Infecções por Coronaviridae/veterinária , Reações Cruzadas , Encefalite Viral/virologia , Células Epiteliais/virologia , Especificidade de Hospedeiro , Humanos , Pulmão/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Modelos Moleculares , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/fisiologia , Mutação Puntual , Conformação Proteica , Receptores Virais/genética , Receptores Virais/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/fisiologia , Células Vero , Replicação Viral , Zoonoses
5.
J Infect Dis ; 217(12): 1932-1941, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29800370

RESUMO

Background: Dengue virus serotypes 1-4 (DENV-1-4) are the most common vector-borne viral pathogens of humans and the etiological agents of dengue fever and dengue hemorrhagic syndrome. A live-attenuated tetravalent dengue vaccine (TDV) developed by Takeda Vaccines has recently progressed to phase 3 safety and efficacy evaluation. Methods: We analyzed the qualitative features of the neutralizing antibody (nAb) response induced in naive and DENV-immune individuals after TDV administration. Using DENV-specific human monoclonal antibodies (mAbs) and recombinant DENV displaying different serotype-specific Ab epitopes, we mapped the specificity of TDV-induced nAbs against DENV-1-3. Results: Nearly all subjects had high levels of DENV-2-specific nAbs directed to epitopes centered on domain III of the envelope protein. In some individuals, the vaccine induced nAbs that tracked with a DENV-1-specific neutralizing epitope centered on domain I of the envelope protein. The vaccine induced binding Abs directed to a DENV-3 type-specific neutralizing epitope, but findings of mapping of DENV-3 type-specific nAbs were inconclusive. Conclusion: Here we provide qualitative measures of the magnitude and epitope specificity of the nAb responses to TDV. This information will be useful for understanding the performance of TDV in clinical trials and for identifying correlates of protective immunity.


Assuntos
Anticorpos Antivirais/sangue , Formação de Anticorpos/imunologia , Dengue Grave/sangue , Dengue Grave/imunologia , Vacinas Atenuadas/imunologia , Adolescente , Adulto , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Método Duplo-Cego , Feminino , Humanos , Imunidade/imunologia , Masculino , Pessoa de Meia-Idade , Células U937 , Vacinação/métodos , Adulto Jovem
6.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747502

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. While bat, camel, and human DPP4 support MERS-CoV infection, several DPP4 orthologs, including mouse, ferret, hamster, and guinea pig DPP4, do not. Previous work revealed that glycosylation of mouse DPP4 plays a role in blocking MERS-CoV infection. Here, we tested whether glycosylation also acts as a determinant of permissivity for ferret, hamster, and guinea pig DPP4. We found that, while glycosylation plays an important role in these orthologs, additional sequence and structural determinants impact their ability to act as functional receptors for MERS-CoV. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and better inform our understanding of virus-receptor interactions associated with disease emergence and host susceptibility.IMPORTANCE MERS-CoV is a recently emerged zoonotic virus that is still circulating in the human population with an ∼35% mortality rate. With no available vaccines or therapeutics, the study of MERS-CoV pathogenesis is crucial for its control and prevention. However, in vivo studies are limited because MERS-CoV cannot infect wild-type mice due to incompatibilities between the virus spike and the mouse host cell receptor, mouse DPP4 (mDPP4). Specifically, mDPP4 has a nonconserved glycosylation site that acts as a barrier to MERS-CoV infection. Thus, one mouse model strategy has been to modify the mouse genome to remove this glycosylation site. Here, we investigated whether glycosylation acts as a barrier to infection for other nonpermissive small-animal species, namely, ferret, guinea pig, and hamster. Understanding the virus-receptor interactions for these DPP4 orthologs will help in the development of additional animal models while also revealing species-specific differences impacting MERS-CoV host range.


Assuntos
Infecções por Coronavirus/patologia , Dipeptidil Peptidase 4/metabolismo , Especificidade de Hospedeiro/fisiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Sequência de Aminoácidos/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Cricetinae , Dipeptidil Peptidase 4/genética , Furões , Glicosilação , Cobaias , Células HEK293 , Humanos , Receptores Virais/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Células Vero
7.
J Infect Dis ; 215(3): 351-358, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932620

RESUMO

Sanofi Pasteur has developed a chimeric yellow fever-dengue, live-attenuated, tetravalent dengue vaccine (CYD-TDV) that is currently approved for use in several countries. In clinical trials, CYD-TDV was efficacious at reducing laboratory-confirmed cases of dengue disease. Efficacy varied by dengue virus (DENV) serotype and prevaccination dengue immune status. We compared the properties of antibodies in naive and DENV-exposed individuals who received CYD-TDV. We depleted specific populations of DENV-reactive antibodies from immune serum samples to estimate the contribution of serotype-cross-reactive and type-specific antibodies to neutralization. Subjects with no preexisting immunity to DENV developed neutralizing antibodies to all 4 serotypes of DENV. Further analysis demonstrated that DENV4 was mainly neutralized by type-specific antibodies whereas DENV1, DENV2, and DENV3 were mainly neutralized by serotype cross-reactive antibodies. When subjects with preexisting immunity to DENV were vaccinated, they developed higher levels of neutralizing antibodies than naive subjects who were vaccinated. In preimmune subjects, CYD-TDV boosted cross-reactive neutralizing antibodies while maintaining type-specific neutralizing antibodies acquired before vaccination. Our results demonstrate that the quality of neutralizing antibodies induced by CYD-TDV varies depending on DENV serotype and previous immune status. We discuss the implications of these results for understanding vaccine efficacy.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Dengue/imunologia , Dengue/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Dengue/prevenção & controle , Flavivirus/imunologia , Humanos , Imunogenicidade da Vacina , Vacinas Atenuadas/imunologia
8.
Proc Natl Acad Sci U S A ; 110(40): 16157-62, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043791

RESUMO

Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ~0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3-5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3-5 showed 1-1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Coronavirus/genética , DNA Complementar/genética , Síndrome Respiratória Aguda Grave/virologia , Northern Blotting , Western Blotting , Células Cultivadas , Primers do DNA/genética , Dipeptidil Peptidase 4/metabolismo , Regulação Viral da Expressão Gênica/genética , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Proteínas Luminescentes , Oriente Médio , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase em Tempo Real , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/fisiologia , Ligação Viral , Replicação Viral/fisiologia , Proteína Vermelha Fluorescente
9.
PLoS Med ; 12(3): e1001807, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25803642

RESUMO

BACKGROUND: Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers. METHODS AND FINDINGS: Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated. CONCLUSIONS: Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential feasibility of an efficacious multivalent NoV VLP vaccine for future use in human populations. TRIAL REGISTRATION: ClinicalTrials.gov NCT01168401.


Assuntos
Anticorpos/sangue , Formação de Anticorpos , Infecções por Caliciviridae/prevenção & controle , Gastroenterite/prevenção & controle , Norovirus/imunologia , Vacinação , Vacinas Virais , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções por Caliciviridae/sangue , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Epitopos , Feminino , Gastroenterite/sangue , Gastroenterite/imunologia , Gastroenterite/virologia , Voluntários Saudáveis , Humanos , Imunização , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Norovirus/classificação , Valores de Referência , Especificidade da Espécie , Adulto Jovem
10.
J Virol ; 88(2): 829-37, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173225

RESUMO

Snow Mountain virus (GII.2.1976) is the prototype strain of GII.2 noroviruses (NoVs), which cause an estimated 8% of norovirus outbreaks, yet little is known about the immunobiology of these viruses. To define the human immune response induced by SMV infection and the antigenic relationship between different GII.2 strains that have circulated between 1976 and 2010, we developed a panel of four GII.2 variant virus-like particles (VLPs) and compared their antigenicities by enzyme immunoassay (EIA) and surrogate antibody neutralization (blockade) assays. Volunteers infected with GII.2.1976 developed a mean 167-fold increase in blockade response against the homotypic VLP by day 8 postchallenge. Blockade extended cross-genotype activity in some individuals but not cross-genogroup activity. Polyclonal sera from GII.2.1976-infected volunteers blocked GII.2.1976 significantly better than they blocked GII.2.2002, GII.2.2008, and GII.2.2010, suggesting that blockade epitopes within the GII.2 strains have evolved in the past decade. To potentially map these epitope changes, we developed mouse monoclonal antibodies (MAbs) against GII.2.1976 VLPs and compared their reactivities to a panel of norovirus VLPs. One MAb had broad cross-genogroup EIA reactivity to a nonblockade, linear, conserved epitope. Six MAbs recognized conformational epitopes exclusive to the GII.2 strains. Two MAbs recognized GII.2 blockade epitopes, and both blocked the entire panel of GII.2 variants. These data indicate that the GII.2 strains, unlike the predominant GII.4 strains, have undergone only a limited amount of evolution in blockade epitopes between 1976 and 2010 and indicate that the GII.2-protective component of a multivalent norovirus vaccine may not require frequent reformulation.


Assuntos
Infecções por Caliciviridae/imunologia , Norovirus/imunologia , Animais , Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/virologia , Reações Cruzadas , Epitopos/imunologia , Genótipo , Humanos , Camundongos , Testes de Neutralização , Norovirus/classificação , Norovirus/genética
11.
J Virol ; 88(13): 7256-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24741081

RESUMO

UNLABELLED: There is currently no licensed vaccine for noroviruses, and development is hindered, in part, by an incomplete understanding of the host adaptive immune response to these highly heterogeneous viruses and rapid GII.4 norovirus molecular evolution. Emergence of a new predominant GII.4 norovirus strain occurs every 2 to 4 years. To address the problem of GII.4 antigenic variation, we tested the hypothesis that chimeric virus-like particle (VLP)-based vaccine platforms, which incorporate antigenic determinants from multiple strains into a single genetic background, will elicit a broader immune response against contemporary and emergent strains. Here, we compare the immune response generated by chimeric VLPs to that of parental strains and a multivalent VLP cocktail. Results demonstrate that chimeric VLPs induce a more broadly cross-blocking immune response than single parental VLPs and a similar response to a multivalent GII.4 VLP cocktail. Furthermore, we show that incorporating epitope site A alone from one strain into the background of another is sufficient to induce a blockade response against the strain donating epitope site A. This suggests a mechanism by which population-wide surveillance of mutations in a single epitope could be used to evaluate antigenic changes in order to identify potential emergent strains and quickly reformulate vaccines against future epidemic strains as they emerge in human populations. IMPORTANCE: Noroviruses are gastrointestinal pathogens that infect an estimated 21 million people per year in the United States alone. GII.4 noroviruses account for >70% of all outbreaks, making them the most clinically important genotype. GII.4 noroviruses undergo a pattern of epochal evolution, resulting in the emergence of new strains with altered antigenicity over time, complicating vaccine design. This work is relevant to norovirus vaccine design as it demonstrates the potential for development of a chimeric VLP-based vaccine platform that may broaden the protective response against multiple GII.4 strains and proposes a potential reformulation strategy to control newly emergent strains in the human population.


Assuntos
Variação Antigênica/imunologia , Infecções por Caliciviridae/imunologia , Proteínas do Capsídeo/imunologia , Epitopos/imunologia , Norovirus/imunologia , Proteínas Recombinantes de Fusão/imunologia , Vacinas de Partículas Semelhantes a Vírus/uso terapêutico , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/genética , Epitopos/genética , Humanos , Hospedeiro Imunocomprometido/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Norovirus/isolamento & purificação , Conformação Proteica , Vacinas de Partículas Semelhantes a Vírus/imunologia
12.
J Virol ; 88(13): 7244-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24648459

RESUMO

UNLABELLED: Genogroup II, genotype 4 (GII.4) noroviruses are known to rapidly evolve, with the emergence of a new primary strain every 2 to 4 years as herd immunity to the previously circulating strain is overcome. Because viral genetic diversity is higher in chronic than in acute infection, chronically infected immunocompromised people have been hypothesized to be a potential source for new epidemic GII.4 strains. However, while some capsid protein residues are under positive selection and undergo patterned changes in sequence variation over time, the relationships between genetic variation and antigenic variation remains unknown. Based on previously published GII.4 strains from a chronically infected individual, we synthetically reconstructed virus-like particles (VLPs) representing early and late isolates from a small-bowel transplant patient chronically infected with norovirus, as well as the parental GII.4-2006b strain. We demonstrate that intrahost GII.4 evolution results in the emergence of antigenically distinct strains over time, comparable to the variation noted between the chronologically predominant GII.4 strains GII.4-2006b and GII.4-2009. Our data suggest that in some individuals the evolution that occurs during a chronic norovirus infection overlaps with changing antigenic epitopes that are associated with successive outbreak strains and may select for isolates that are potentially able to escape herd immunity from earlier isolates. IMPORTANCE: Noroviruses are agents of gastrointestinal illness, infecting an estimated 21 million people per year in the United States alone. In healthy individuals, symptomatic infection typically resolves within 24 to 48 h. However, symptoms may persist for years in immunocompromised individuals, and development of successful treatments for these patients is a continuing challenge. This work is relevant to the design of successful norovirus therapeutics for chronically infected patients; provides support for previous assertions that chronically infected individuals may serve as reservoirs for new, antigenically unique emergent strains; and furthers our understanding of genogroup II, genotype 4 (GII.4) norovirus immune-driven molecular evolution.


Assuntos
Variação Antigênica/imunologia , Evolução Biológica , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/imunologia , Gastroenterite/virologia , Hospedeiro Imunocomprometido/imunologia , Norovirus/imunologia , Sequência de Aminoácidos , Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Surtos de Doenças/prevenção & controle , Epitopos/imunologia , Gastroenterite/imunologia , Gastroenterite/prevenção & controle , Humanos , Dados de Sequência Molecular , Norovirus/isolamento & purificação , Homologia de Sequência de Aminoácidos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/uso terapêutico
13.
J Virol ; 88(16): 8826-42, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872579

RESUMO

UNLABELLED: GII.4 noroviruses (NoVs) are the primary cause of epidemic viral acute gastroenteritis. One primary obstacle to successful NoV vaccination is the extensive degree of antigenic diversity among strains. The major capsid protein of GII.4 strains is evolving rapidly, resulting in the emergence of new strains with altered blockade epitopes. In addition to characterizing these evolving blockade epitopes, we have identified monoclonal antibodies (MAbs) that recognize a blockade epitope conserved across time-ordered GII.4 strains. Uniquely, the blockade potencies of MAbs that recognize the conserved GII.4 blockade epitope were temperature sensitive, suggesting that particle conformation may regulate functional access to conserved blockade non-surface-exposed epitopes. To map conformation-regulating motifs, we used bioinformatics tools to predict conserved motifs within the protruding domain of the capsid and designed mutant VLPs to test the impacts of substitutions in these motifs on antibody cross-GII.4 blockade. Charge substitutions at residues 310, 316, 484, and 493 impacted the blockade potential of cross-GII.4 blockade MAbs with minimal impact on the blockade of MAbs targeting other, separately evolving blockade epitopes. Specifically, residue 310 modulated antibody blockade temperature sensitivity in the tested strains. These data suggest access to the conserved GII.4 blockade antibody epitope is regulated by particle conformation, temperature, and amino acid residues positioned outside the antibody binding site. The regulating motif is under limited selective pressure by the host immune response and may provide a robust target for broadly reactive NoV therapeutics and protective vaccines. IMPORTANCE: In this study, we explored the factors that govern norovirus (NoV) cross-strain antibody blockade. We found that access to the conserved GII.4 blockade epitope is regulated by temperature and distal residues outside the antibody binding site. These data are most consistent with a model of NoV particle conformation plasticity that regulates antibody binding to a distally conserved blockade epitope. Further, antibody "locking" of the particle into an epitope-accessible conformation prevents ligand binding, providing a potential target for broadly effective drugs. These observations open lines of inquiry into the mechanisms of human NoV entry and uncoating, fundamental biological questions that are currently unanswerable for these noncultivatable pathogens.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Norovirus/imunologia , Vírion/imunologia , Sítios de Ligação/imunologia , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Capsídeo/imunologia , Proteínas do Capsídeo/imunologia , Gastroenterite/imunologia , Gastroenterite/virologia
14.
J Virol ; 87(5): 2803-13, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23269783

RESUMO

The major capsid protein of norovirus GII.4 strains is evolving rapidly, resulting in epidemic strains with altered antigenicity. GII.4.2006 Minerva strains circulated at pandemic levels in 2006 and persisted at lower levels until 2009. In 2009, a new GII.4 variant, GII.4.2009 New Orleans, emerged and since then has become the predominant strain circulating in human populations. To determine whether changes in evolving blockade epitopes correlate with the emergence of the GII.4.2009 New Orleans strains, we compared the antibody reactivity of a panel of mouse monoclonal antibodies (MAbs) against GII.4.2006 and GII.4.2009 virus-like particles (VLPs). Both anti-GII.4.2006 and GII.4.2009 MAbs effectively differentiated the two strains by VLP-carbohydrate ligand blockade assay. Most of the GII.4.2006 MAbs preferentially blocked GII.4.2006, while all of the GII.4.2009 MAbs preferentially blocked GII.4.2009, although 8 of 12 tested blockade MAbs blocked both VLPs. Using mutant VLPs designed to alter predicted antigenic epitopes, binding of seven of the blockade MAbs was impacted by alterations in epitope A, identifying residues 294, 296, 297, 298, 368, and 372 as important antigenic sites in these strains. Convalescent-phase serum collected from a GII.4.2009 outbreak confirmed the immunodominance of epitope A, since alterations of epitope A affected serum reactivity by 40%. These data indicate that the GII.4.2009 New Orleans variant has evolved a key blockade epitope, possibly allowing for at least partial escape from protective herd immunity and provide epidemiological support for the utility of monitoring changes in epitope A in emergent strain surveillance.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/imunologia , Epitopos/imunologia , Norovirus/classificação , Norovirus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/imunologia , Surtos de Doenças , Evolução Molecular , Humanos , Imunidade Coletiva , Camundongos
15.
PLoS Pathog ; 8(5): e1002705, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615565

RESUMO

Noroviruses are the principal cause of epidemic gastroenteritis worldwide with GII.4 strains accounting for 80% of infections. The major capsid protein of GII.4 strains is evolving rapidly, resulting in new epidemic strains with altered antigenic potentials. To test if antigenic drift may contribute to GII.4 persistence, human memory B cells were immortalized and the resulting human monoclonal antibodies (mAbs) characterized for reactivity to a panel of time-ordered GII.4 virus-like particles (VLPs). Reflecting the complex exposure history of the volunteer, human anti-GII.4 mAbs grouped into three VLP reactivity patterns; ancestral (1987-1997), contemporary (2004-2009), and broad (1987-2009). NVB 114 reacted exclusively to the earliest GII.4 VLPs by EIA and blockade. NVB 97 specifically bound and blocked only contemporary GII.4 VLPs, while NBV 111 and 43.9 exclusively reacted with and blocked variants of the GII.4.2006 Minerva strain. Three mAbs had broad GII.4 reactivity. Two, NVB 37.10 and 61.3, also detected other genogroup II VLPs by EIA but did not block any VLP interactions with carbohydrate ligands. NVB 71.4 cross-neutralized the panel of time-ordered GII.4 VLPs, as measured by VLP-carbohydrate blockade assays. Using mutant VLPs designed to alter predicted antigenic epitopes, two evolving, GII.4-specific, blockade epitopes were mapped. Amino acids 294-298 and 368-372 were required for binding NVB 114, 111 and 43.9 mAbs. Amino acids 393-395 were essential for binding NVB 97, supporting earlier correlations between antibody blockade escape and carbohydrate binding variation. These data inform VLP vaccine design, provide a strategy for expanding the cross-blockade potential of chimeric VLP vaccines, and identify an antibody with broadly neutralizing therapeutic potential for the treatment of human disease. Moreover, these data support the hypothesis that GII.4 norovirus evolution is heavily influenced by antigenic variation of neutralizing epitopes and consequently, antibody-driven receptor switching; thus, protective herd immunity is a driving force in norovirus molecular evolution.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Variação Antigênica , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Evolução Molecular , Norovirus/imunologia , Sequência de Aminoácidos , Especificidade de Anticorpos , Linfócitos B/imunologia , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/química , Células Cultivadas , Epitopos/imunologia , Gastroenterite/imunologia , Gastroenterite/virologia , Humanos , Norovirus/genética , Vacinas de Partículas Semelhantes a Vírus
16.
J Infect Dis ; 208(11): 1877-87, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23908476

RESUMO

BACKGROUND: GII.4 noroviruses are a significant source of acute gastroenteritis worldwide, causing the majority of human norovirus outbreaks. Evolution of the GII.4 major capsid protein occurs rapidly, resulting in the emergence of new strains that produce successive waves of pandemic disease. A new pandemic isolate, GII.4 2012 Sydney, largely replaced previously circulating strains in late 2012. We compare the antigenic properties of GII.4 2012 Sydney with previously circulating strains. METHODS: To determine whether GII.4-2012 Sydney is antigenically different from recently circulating strains GII.4-2006 Minerva and GII.4-2009 New Orleans in previously identified blockade epitopes, we compared reactivity and blockade profiles of GII.4-2006, GII.4-2009, and GII.4-2012 virus-like particles in surrogate neutralization/blockade assays using monoclonal antibodies and human polyclonal sera. RESULTS: Using monoclonal antibodies that map to known blockade epitopes in GII.4-2006 and GII.4-2009 and human outbreak polyclonal sera, we demonstrate either complete loss or significantly reduced reactivity and blockade of GII.4.2012 compared to GII.4-2006 and GII.4-2009. CONCLUSIONS: GII.4-2012 Sydney is antigenically different from GII.4-2006 Minerva and GII.4-2009 New Orleans in at least 2 key blockade epitopes. Viral evolution in key potential neutralization epitopes likely allowed GII.4-2012 to escape from human herd immunity and emerge as the new predominant strain.


Assuntos
Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/imunologia , Epitopos/imunologia , Gastroenterite/virologia , Norovirus/imunologia , Pandemias , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Evolução Biológica , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/imunologia , Proteínas do Capsídeo/genética , Gastroenterite/epidemiologia , Gastroenterite/imunologia , Variação Genética , Genoma Viral/genética , Humanos , Hibridomas , Imunidade Coletiva , Imunoglobulina G/sangue , Camundongos , Norovirus/genética , Norovirus/isolamento & purificação , Especificidade da Espécie
17.
J Virol ; 86(2): 873-83, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22090098

RESUMO

Noroviruses are the primary cause of epidemic gastroenteritis in humans, and GII.4 strains cause ∼80% of the overall disease burden. Surrogate neutralization assays using sera and mouse monoclonal antibodies (MAbs) suggest that antigenic variation maintains GII.4 persistence in the face of herd immunity, as the emergence of new pandemic strains is accompanied by newly evolved neutralization epitopes. To potentially identify specific blockade epitopes that are likely neutralizing and evolving between pandemic strains, mice were hyperimmunized with GII.4-2002 virus-like particles (VLPs) and the resulting MAbs were characterized by biochemical and immunologic assays. All of the MAbs but one recognized GII.4 VLPs representing strains circulating from 1987 to 2009. One MAb weakly recognized GII.4-1987 and -1997 while strongly interacting with 2002 VLPs. This antibody was highly selective and effective at blocking only GII.4-2002-ligand binding. Using bioinformatic analyses, we predicted an evolving GII.4 surface epitope composed of amino acids 407, 412, and 413 and subsequently built mutant VLPs to test the impact of the epitope on MAb binding and blockade potential. Replacement of the 2002 epitope with the epitopes found in 1987 or 2006 strains either reduced or ablated enzyme immunoassay recognition by the GII.4-2002-specific blockade MAb. These data identify a novel, evolving blockade epitope that may be associated with protective immunity, providing further support for the hypotheses that GII.4 norovirus evolution results in antigenic variation that allows the virus to escape from protective herd immunity, resulting in new epidemic strains.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Variação Antigênica , Infecções por Caliciviridae/virologia , Mapeamento de Epitopos/métodos , Norovirus/imunologia , Sequência de Aminoácidos , Animais , Evolução Biológica , Infecções por Caliciviridae/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Mapeamento de Epitopos/instrumentação , Gastroenterite/imunologia , Gastroenterite/virologia , Humanos , Camundongos , Dados de Sequência Molecular , Testes de Neutralização , Norovirus/genética
18.
Nat Commun ; 12(1): 1102, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597521

RESUMO

The four-dengue virus (DENV) serotypes infect several hundred million people annually. For the greatest safety and efficacy, tetravalent DENV vaccines are designed to stimulate balanced protective immunity to all four serotypes. However, this has been difficult to achieve. Clinical trials with a leading vaccine demonstrated that unbalanced replication and immunodominance of one vaccine component over others can lead to low efficacy and vaccine enhanced severe disease. The Laboratory of Infectious Diseases at the National Institutes of Health has developed a live attenuated tetravalent DENV vaccine (TV003), which is currently being tested in phase 3 clinical trials. Here we report, our study to determine if TV003 stimulate balanced and serotype-specific (TS) neutralizing antibody (nAb) responses to each serotype. Serum samples from twenty-one dengue-naive individuals participated under study protocol CIR287 (ClinicalTrials.gov NCT02021968) are analyzed 6 months after vaccination. Most subjects (76%) develop TS nAbs to 3 or 4 DENV serotypes, indicating immunity is induced by each vaccine component. Vaccine-induced TS nAbs map to epitopes known to be targets of nAbs in people infected with wild type DENVs. Following challenge with a partially attenuated strain of DENV2, all 21 subjects are protected from the efficacy endpoints. However, some vaccinated individuals develop post challenge nAb boost, while others mount post-challenge antibody responses that are consistent with sterilizing immunity. TV003 vaccine induced DENV2 TS nAbs are associated with sterilizing immunity. Our results indicate that nAbs to TS epitopes on each serotype may be a better correlate than total levels of nAbs currently used for guiding DENV vaccine development.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Formação de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Dengue/prevenção & controle , Dengue/virologia , Vacinas contra Dengue/administração & dosagem , Vírus da Dengue/classificação , Epitopos/imunologia , Humanos , Sorotipagem , Especificidade da Espécie , Resultado do Tratamento , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
19.
EBioMedicine ; 41: 465-478, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30857944

RESUMO

BACKGROUND: Acute viral infections induce a rapid and transient increase in antibody-secreting plasmablasts. At convalescence, memory B cells (MBC) and long-lived plasma cells (LLPC) are responsible for long-term humoral immunity. Following an acute viral infection, the specific properties and relationships between antibodies produced by these B cell compartments are poorly understood. METHODS: We utilized a controlled human challenge model of primary dengue virus serotype 2 (DENV2) infection to study acute and convalescent B-cell responses. FINDINGS: The level of DENV2 replication was correlated with the magnitude of the plasmablast response. Functional analysis of plasmablast-derived monoclonal antibodies showed that the DENV2-specific response was dominated by cells producing DENV2 serotype-specific antibodies. DENV2-neutralizing antibodies targeted quaternary structure epitopes centered on domain III of the viral envelope protein (EDIII). Functional analysis of MBC and serum antibodies from the same subjects six months post-challenge revealed maintenance of the serotype-specific response in both compartments. The serum response mainly targeted DENV2 serotype-specific epitopes on EDIII. INTERPRETATION: Our data suggest overall functional alignment of DENV2-specific responses from the plasmablast, through the MBC and LLPC compartments following primary DENV2 inflection. These results provide enhanced resolution of the temporal and specificity of the B cell compartment in viral infection and serve as framework for evaluation of B cell responses in challenge models. FUNDING: This study was supported by the Bill and Melinda Gates Foundation and the National Institutes of Health.


Assuntos
Linfócitos B/metabolismo , Dengue/diagnóstico , Doença Aguda , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Mapeamento de Epitopos , Epitopos/imunologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/virologia , Estudos Longitudinais , Plasmócitos/citologia , Plasmócitos/metabolismo , Sorogrupo , Proteínas do Envelope Viral/imunologia
20.
Cell Host Microbe ; 24(5): 743-750.e5, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30439343

RESUMO

Antibody (Ab)-dependent enhancement can exacerbate dengue virus (DENV) infection due to cross-reactive Abs from an initial DENV infection, facilitating replication of a second DENV. Zika virus (ZIKV) emerged in DENV-endemic areas, raising questions about whether existing immunity could affect these related flaviviruses. We show that mice born with circulating maternal Abs against ZIKV develop severe disease upon DENV infection. Compared with pups of naive mothers, those born to ZIKV-immune mice lacking type I interferon receptor in myeloid cells (LysMCre+Ifnar1fl/fl) exhibit heightened disease and viremia upon DENV infection. Passive transfer of IgG isolated from mice born to ZIKV-immune mothers resulted in increased viremia in naive recipient mice. Treatment with Abs blocking inflammatory cytokine tumor necrosis factor linked to DENV disease or Abs blocking DENV entry improved survival of DENV-infected mice born to ZIKV-immune mothers. Thus, the maternal Ab response to ZIKV infection or vaccination might predispose to severe dengue disease in infants.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Facilitadores/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , Linhagem Celular , Reações Cruzadas/imunologia , Culicidae , Citocinas/metabolismo , Vírus da Dengue/patogenicidade , Modelos Animais de Doenças , Feminino , Humanos , Imunidade , Imunoglobulina G , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides , Receptor de Interferon alfa e beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Viremia , Internalização do Vírus , Zika virus/patogenicidade , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA