Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Dev Dyn ; 252(5): 647-667, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36606449

RESUMO

BACKGROUND: The gene encoding the transcription factor, Grainyhead-like 3 (Grhl3), plays critical roles in mammalian development and homeostasis. Grhl3-null embryos exhibit thoraco-lumbo-sacral spina bifida and soft-tissue syndactyly. Additional studies reveal that these embryos also exhibit an epidermal proliferation/differentiation imbalance. This manifests as skin barrier defects resulting in peri-natal lethality and defective wound repair. Despite these extensive analyses of Grhl3 loss-of-function models, the consequences of gain-of-function of this gene have been difficult to achieve. RESULTS: In this study, we generated a novel mouse model that expresses Grhl3 from a transgene integrated in the Rosa26 locus on an endogenous Grhl3-null background. Expression of the transgene rescues both the neurulation and skin barrier defects of the knockout mice, allowing survival into adulthood. Despite this, the mice are not normal, exhibiting a range of phenotypes attributable to dysregulated Grhl3 expression. In mice homozygous for the transgene, we observe a severe Shaker-Waltzer phenotype associated with hearing impairment. Micro-CT scanning of the inner ear revealed profound structural alterations underlying these phenotypes. In addition, these mice exhibit other developmental anomalies including hair loss, digit defects, and epidermal dysmorphogenesis. CONCLUSION: Taken together, these findings indicate that diverse developmental processes display low tolerance to dysregulation of Grhl3.


Assuntos
Proteínas de Ligação a DNA , Disrafismo Espinal , Camundongos , Animais , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Disrafismo Espinal/genética , Epiderme/metabolismo , Camundongos Knockout , Mamíferos/metabolismo
2.
Cell Mol Gastroenterol Hepatol ; 15(5): 1051-1069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36442813

RESUMO

BACKGROUND & AIMS: Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy with a poor long-term prognosis. The molecular mechanisms underlying the initiation and progression of this tumor are largely unknown. The transcription factor GRHL3 functions as a potent tumor suppressor in SCC of skin, head, and neck. This study aims to determine whether GRHL3 also plays a role in the homeostasis of the esophageal epithelium and in the development of ESCC. METHODS: The effects of Grhl3 deletion on squamous epithelial homeostasis in embryos and adult mice were examined using immunohistochemistry, transmission electron microscopy, and real-time polymerase chain reaction. The conditionally deleted mice were subsequently used to determine susceptibility to ESCC. Whole-transcriptome sequencing (RNA-seq) was performed on ESCC in wild-type and Grhl3 deleted animals. To decipher the signaling pathways, real-time polymerase chain reaction, immunohistochemistry, analysis of chromatin immunoprecipitation sequencing, chromatin immunoprecipitation-polymerase chain reaction, and RNA seq datasets were used. Primary human samples were used to validate the findings in the mouse model. RESULTS: Loss of Grhl3 perturbs the proliferation-differentiation balance in the esophageal epithelium, thereby increasing the susceptibility to esophageal carcinogenesis in adult mice. Grhl3 imparts its tumor suppressor function by regulating the expression of HOPX. We have identified the Wnt/ß-catenin pathway as the downstream effectors of GRHL3 and HOPX through our integrated approach using patient-derived ESCC samples and mouse models. CONCLUSIONS: GRHL3 conveys its tumor suppressor function in ESCC through regulating its target gene HOPX, which limits Wnt/ß-catenin signaling. Targeted therapies to inhibit this pathway could be a potential treatment strategy for ESCC patients with reduced GRHL3 expression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Adulto , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , beta Catenina/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Via de Sinalização Wnt , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA