Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(6): 1600-1618.e17, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150625

RESUMO

Autism spectrum disorder (ASD) manifests as alterations in complex human behaviors including social communication and stereotypies. In addition to genetic risks, the gut microbiome differs between typically developing (TD) and ASD individuals, though it remains unclear whether the microbiome contributes to symptoms. We transplanted gut microbiota from human donors with ASD or TD controls into germ-free mice and reveal that colonization with ASD microbiota is sufficient to induce hallmark autistic behaviors. The brains of mice colonized with ASD microbiota display alternative splicing of ASD-relevant genes. Microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. Indeed, treatment of an ASD mouse model with candidate microbial metabolites improves behavioral abnormalities and modulates neuronal excitability in the brain. We propose that the gut microbiota regulates behaviors in mice via production of neuroactive metabolites, suggesting that gut-brain connections contribute to the pathophysiology of ASD.


Assuntos
Transtorno do Espectro Autista/microbiologia , Sintomas Comportamentais/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Bactérias , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Microbiota , Fatores de Risco
2.
Cell ; 171(6): 1326-1339.e14, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29103612

RESUMO

SCF (Skp1-Cullin-F-box) ubiquitin ligases comprise several dozen modular enzymes that have diverse roles in biological regulation. SCF enzymes share a common catalytic core containing Cul1⋅Rbx1, which is directed toward different substrates by a variable substrate receptor (SR) module comprising 1 of 69 F-box proteins bound to Skp1. Despite the broad cellular impact of SCF enzymes, important questions remain about the architecture and regulation of the SCF repertoire, including whether SRs compete for Cul1 and, if so, how this competition is managed. Here, we devise methods that preserve the in vivo assemblages of SCF complexes and apply quantitative mass spectrometry to perform a census of these complexes (the "SCFome") in various states. We show that Nedd8 conjugation and the SR exchange factor Cand1 have a profound effect on shaping the SCFome. Together, these factors enable rapid remodeling of SCF complexes to promote biased assembly of SR modules bound to substrate.


Assuntos
Proteínas Ligases SKP Culina F-Box/química , Proteínas de Transporte/metabolismo , Linhagem Celular , Cromatografia de Afinidade , Proteínas Culina/metabolismo , Humanos , Espectrometria de Massas , Proteína NEDD8/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo
3.
Mol Cell ; 81(13): 2693-2704.e12, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33964204

RESUMO

The assembly of nascent proteins into multi-subunit complexes is a tightly regulated process that must occur at high fidelity to maintain cellular homeostasis. The ER membrane protein complex (EMC) is an essential insertase that requires seven membrane-spanning and two soluble cytosolic subunits to function. Here, we show that the kinase with no lysine 1 (WNK1), known for its role in hypertension and neuropathy, functions as an assembly factor for the human EMC. WNK1 uses a conserved amphipathic helix to stabilize the soluble subunit, EMC2, by binding to the EMC2-8 interface. Shielding this hydrophobic surface prevents promiscuous interactions of unassembled EMC2 and directly competes for binding of E3 ubiquitin ligases, permitting assembly. Depletion of WNK1 thus destabilizes both the EMC and its membrane protein clients. This work describes an unexpected role for WNK1 in protein biogenesis and defines the general requirements of an assembly factor that will apply across the proteome.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Retículo Endoplasmático/genética , Células HeLa , Humanos , Complexos Multiproteicos/genética , Proteína Quinase 1 Deficiente de Lisina WNK/genética
4.
Cell ; 153(1): 206-15, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23453757

RESUMO

The modular SCF (Skp1, cullin, and F box) ubiquitin ligases feature a large family of F box protein substrate receptors that enable recognition of diverse targets. However, how the repertoire of SCF complexes is sustained remains unclear. Real-time measurements of formation and disassembly indicate that SCF(Fbxw7) is extraordinarily stable, but, in the Nedd8-deconjugated state, the cullin-binding protein Cand1 augments its dissociation by one-million-fold. Binding and ubiquitylation assays show that Cand1 is a protein exchange factor that accelerates the rate at which Cul1-Rbx1 equilibrates with multiple F box protein-Skp1 modules. Depletion of Cand1 from cells impedes recruitment of new F box proteins to pre-existing Cul1 and profoundly alters the cellular landscape of SCF complexes. We suggest that catalyzed protein exchange may be a general feature of dynamic macromolecular machines and propose a hypothesis for how substrates, Nedd8, and Cand1 collaborate to regulate the cellular repertoire of SCF complexes.


Assuntos
Proteínas Ligases SKP Culina F-Box/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas Culina/metabolismo , Escherichia coli/genética , Proteínas F-Box/metabolismo , Humanos , Espectrometria de Massas , Proteínas Ligases SKP Culina F-Box/química
5.
Mol Cell ; 77(5): 1092-1106.e9, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31973889

RESUMO

Co-opting Cullin4 RING ubiquitin ligases (CRL4s) to inducibly degrade pathogenic proteins is emerging as a promising therapeutic strategy. Despite intense efforts to rationally design degrader molecules that co-opt CRL4s, much about the organization and regulation of these ligases remains elusive. Here, we establish protein interaction kinetics and estimation of stoichiometries (PIKES) analysis, a systematic proteomic profiling platform that integrates cellular engineering, affinity purification, chemical stabilization, and quantitative mass spectrometry to investigate the dynamics of interchangeable multiprotein complexes. Using PIKES, we show that ligase assemblies of Cullin4 with individual substrate receptors differ in abundance by up to 200-fold and that Cand1/2 act as substrate receptor exchange factors. Furthermore, degrader molecules can induce the assembly of their cognate CRL4, and higher expression of the associated substrate receptor enhances degrader potency. Beyond the CRL4 network, we show how PIKES can reveal systems level biochemistry for cellular protein networks important to drug development.


Assuntos
Cromatografia Líquida de Alta Pressão , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Células HEK293 , Humanos , Cinética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Mapas de Interação de Proteínas , Proteólise , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
6.
Mol Cell ; 73(4): 803-814.e6, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30639243

RESUMO

Intron retention (IR) has emerged as an important mechanism of gene expression control, but the factors controlling IR events remain poorly understood. We observed consistent IR in one intron of the Irf7 gene and identified BUD13 as an RNA-binding protein that acts at this intron to increase the amount of successful splicing. Deficiency in BUD13 was associated with increased IR, decreased mature Irf7 transcript and protein levels, and consequently a dampened type I interferon response, which compromised the ability of BUD13-deficient macrophages to withstand vesicular stomatitis virus (VSV) infection. Global analysis of BUD13 knockdown and BUD13 cross-linking to RNA revealed a subset of introns that share many characteristics with the one found in Irf7 and are spliced in a BUD13-dependent manner. Deficiency of BUD13 led to decreased mature transcript from genes containing such introns. Thus, by acting as an antagonist to IR, BUD13 facilitates the expression of genes at which IR occurs.


Assuntos
Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Íntrons , Macrófagos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estomatite Vesicular/metabolismo , Vírus da Estomatite Vesicular Indiana/patogenicidade , Animais , Sítios de Ligação , Chlorocebus aethiops , Sequência Rica em GC , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 7 de Interferon/genética , Interferon Tipo I/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Camundongos Endogâmicos C57BL , Ligação Proteica , Sítios de Splice de RNA , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Células Vero , Estomatite Vesicular/genética , Estomatite Vesicular/imunologia , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/imunologia
7.
Mol Cell ; 61(6): 809-20, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26990986

RESUMO

Cereblon (CRBN), a substrate receptor for the cullin-RING ubiquitin ligase 4 (CRL4) complex, is a direct protein target for thalidomide teratogenicity and antitumor activity of immunomodulatory drugs (IMiDs). Here we report that glutamine synthetase (GS) is an endogenous substrate of CRL4(CRBN). Upon exposing cells to high glutamine concentration, GS is acetylated at lysines 11 and 14, yielding a degron that is necessary and sufficient for binding and ubiquitylation by CRL4(CRBN) and degradation by the proteasome. Binding of acetylated degron peptides to CRBN depends on an intact thalidomide-binding pocket but is not competitive with IMiDs. These findings reveal a feedback loop involving CRL4(CRBN) that adjusts GS protein levels in response to glutamine and uncover a new function for lysine acetylation.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Fatores Imunológicos/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Proteínas Adaptadoras de Transdução de Sinal , Glutamina/metabolismo , Células HEK293 , Humanos , Lisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Talidomida/metabolismo , Ubiquitinação
8.
Proc Natl Acad Sci U S A ; 117(16): 8941-8947, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32241888

RESUMO

The bacterial flagellum is an amazing nanomachine. Understanding how such complex structures arose is crucial to our understanding of cellular evolution. We and others recently reported that in several Gammaproteobacterial species, a relic subcomplex comprising the decorated P and L rings persists in the outer membrane after flagellum disassembly. Imaging nine additional species with cryo-electron tomography, here, we show that this subcomplex persists after flagellum disassembly in other phyla as well. Bioinformatic analyses fail to show evidence of any recent horizontal transfers of the P- and L-ring genes, suggesting that this subcomplex and its persistence is an ancient and conserved feature of the flagellar motor. We hypothesize that one function of the P and L rings is to seal the outer membrane after motor disassembly.


Assuntos
Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Flagelos/genética , Especiação Genética , Bactérias/citologia , Bactérias/metabolismo , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/ultraestrutura , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Biologia Computacional , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Flagelos/metabolismo , Genes Bacterianos , Filogenia
9.
Appl Environ Microbiol ; 87(15): e0020021, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33990310

RESUMO

Characterizing the cell-level metabolic trade-offs that phytoplankton exhibit in response to changing environmental conditions is important for predicting the impact of these changes on marine food web dynamics and biogeochemical cycling. The time-selective proteome-labeling approach, bioorthogonal noncanonical amino acid tagging (BONCAT), has potential to provide insight into differential allocation of resources at the cellular level, especially when coupled with proteomics. However, the application of this technique in marine phytoplankton remains limited. We demonstrate that the marine cyanobacteria Synechococcus sp. and two groups of eukaryotic algae take up the modified amino acid l-homopropargylglycine (HPG), suggesting that BONCAT can be used to detect translationally active phytoplankton. However, the impact of HPG addition on growth dynamics varied between groups of phytoplankton. In addition, proteomic analysis of Synechococcus cells grown with HPG revealed a physiological shift in nitrogen metabolism, general protein stress, and energy production, indicating a potential limitation for the use of BONCAT in understanding the cell-level response of Synechococcus sp. to environmental change. Variability in HPG sensitivity between algal groups and the impact of HPG on Synechococcus physiology indicates that particular considerations should be taken when applying this technique to other marine taxa or mixed marine microbial communities. IMPORTANCE Phytoplankton form the base of the marine food web and substantially impact global energy and nutrient flow. Marine picocyanobacteria of the genus Synechococcus comprise a large portion of phytoplankton biomass in the ocean and therefore are important model organisms. The technical challenges of environmental proteomics in mixed microbial communities have limited our ability to detect the cell-level adaptations of phytoplankton communities to a changing environment. The proteome labeling technique, bioorthogonal noncanonical amino acid tagging (BONCAT), has potential to address some of these challenges by simplifying proteomic analyses. This study explores the ability of marine phytoplankton to take up the modified amino acid, l-homopropargylglycine (HPG), required for BONCAT, and investigates the proteomic response of Synechococcus to HPG. We not only demonstrate that cyanobacteria can take up HPG but also highlight the physiological impact of HPG on Synechococcus, which has implications for future applications of this technique in the marine environment.


Assuntos
Alcinos/farmacologia , Glicina/análogos & derivados , Fitoplâncton/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Synechococcus/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Glicina/farmacologia , Nitrogênio/metabolismo , Fitoplâncton/metabolismo , Proteoma/efeitos dos fármacos , Proteômica , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo
10.
Nature ; 521(7551): 232-6, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25915022

RESUMO

Many long non-coding RNAs (lncRNAs) affect gene expression, but the mechanisms by which they act are still largely unknown. One of the best-studied lncRNAs is Xist, which is required for transcriptional silencing of one X chromosome during development in female mammals. Despite extensive efforts to define the mechanism of Xist-mediated transcriptional silencing, we still do not know any proteins required for this role. The main challenge is that there are currently no methods to comprehensively define the proteins that directly interact with a lncRNA in the cell. Here we develop a method to purify a lncRNA from cells and identify proteins interacting with it directly using quantitative mass spectrometry. We identify ten proteins that specifically associate with Xist, three of these proteins--SHARP, SAF-A and LBR--are required for Xist-mediated transcriptional silencing. We show that SHARP, which interacts with the SMRT co-repressor that activates HDAC3, is not only essential for silencing, but is also required for the exclusion of RNA polymerase II (Pol II) from the inactive X. Both SMRT and HDAC3 are also required for silencing and Pol II exclusion. In addition to silencing transcription, SHARP and HDAC3 are required for Xist-mediated recruitment of the polycomb repressive complex 2 (PRC2) across the X chromosome. Our results suggest that Xist silences transcription by directly interacting with SHARP, recruiting SMRT, activating HDAC3, and deacetylating histones to exclude Pol II across the X chromosome.


Assuntos
Inativação Gênica , Histona Desacetilases/metabolismo , Espectrometria de Massas/métodos , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/metabolismo , Transcrição Gênica/genética , Cromossomo X/genética , Acetilação , Animais , Linhagem Celular , Proteínas de Ligação a DNA , Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/metabolismo , Feminino , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Histonas/metabolismo , Masculino , Camundongos , Correpressor 2 de Receptor Nuclear/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Cromossomo X/metabolismo , Inativação do Cromossomo X/genética , Receptor de Lamina B
11.
Proc Natl Acad Sci U S A ; 115(21): E4796-E4805, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29728462

RESUMO

Gene regulation is one of the most ubiquitous processes in biology. However, while the catalog of bacterial genomes continues to expand rapidly, we remain ignorant about how almost all of the genes in these genomes are regulated. At present, characterizing the molecular mechanisms by which individual regulatory sequences operate requires focused efforts using low-throughput methods. Here, we take a first step toward multipromoter dissection and show how a combination of massively parallel reporter assays, mass spectrometry, and information-theoretic modeling can be used to dissect multiple bacterial promoters in a systematic way. We show this approach on both well-studied and previously uncharacterized promoters in the enteric bacterium Escherichia coli In all cases, we recover nucleotide-resolution models of promoter mechanism. For some promoters, including previously unannotated ones, the approach allowed us to further extract quantitative biophysical models describing input-output relationships. Given the generality of the approach presented here, it opens up the possibility of quantitatively dissecting the mechanisms of promoter function in E. coli and a wide range of other bacteria.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Proteínas de Fluorescência Verde/metabolismo , Regiões Promotoras Genéticas , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ativação Transcricional
12.
Mol Microbiol ; 112(3): 992-1009, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254296

RESUMO

Though most bacteria in nature are nutritionally limited and grow slowly, our understanding of core processes like transcription comes largely from studies in model organisms doubling rapidly. We previously identified a small protein of unknown function, SutA, in a screen of proteins synthesized in Pseudomonas aeruginosa during dormancy. SutA binds RNA polymerase (RNAP), causing widespread changes in gene expression, including upregulation of the ribosomal RNA genes. Here, using biochemical and structural methods, we examine how SutA interacts with RNAP and the functional consequences of these interactions. We show that SutA comprises a central α-helix with unstructured N- and C-terminal tails, and binds to the ß1 domain of RNAP. It activates transcription from the rrn promoter by both the housekeeping sigma factor holoenzyme (Eσ70 ) and the stress sigma factor holoenzyme (EσS ) in vitro, but has a greater impact on EσS . In both cases, SutA appears to affect intermediates in the open complex formation and its N-terminal tail is required for activation. The small magnitudes of in vitro effects are consistent with a role in maintaining activity required for homeostasis during dormancy. Our results add SutA to a growing list of transcription regulators that use their intrinsically disordered regions to remodel transcription complexes.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/crescimento & desenvolvimento , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Ativação Transcricional
13.
Anal Chem ; 92(4): 3077-3085, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32011865

RESUMO

The stable isotopes of sulfate, nitrate, and phosphate are frequently used to study geobiological processes of the atmosphere, ocean, as well as land. Conventionally, the isotopes of these and other oxyanions are measured by isotope-ratio sector mass spectrometers after conversion into gases. Such methods are prone to various limitations on sensitivity, sample throughput, or precision. In addition, there is no general tool that can analyze several oxyanions or all the chemical elements they contain. Here, we describe a new approach that can potentially overcome some of these limitations based on electrospray hyphenated with Quadrupole Orbitrap mass spectrometry. This technique yields an average accuracy of 1-2‰ for sulfate δ34S and δ18O and nitrate δ15N and δ18O, based on in-house and international standards. Less abundant variants such as δ17O, δ33S, and δ36S, and the 34S-18O "clumped" sulfate can be quantified simultaneously. The observed precision of isotope ratios is limited by the number of ions counted. The counting of rare ions can be accelerated by removing abundant ions with the quadrupole mass filter. Electrospray mass spectrometry (ESMS) exhibits high-throughput and sufficient sensitivity. For example, less than 1 nmol sulfate is required to determine 18O/34S ratios with 0.2‰ precision within minutes. A purification step is recommended for environmental samples as our proposed technique is susceptible to matrix effects. Building upon these initial provisions, new features of the isotopic anatomy of mineral ions can now be explored with ESMS instruments that are increasingly available to bioanalytical laboratories.


Assuntos
Oxigênio/análise , Ânions/análise , Isótopos de Nitrogênio , Isótopos de Oxigênio , Espectrometria de Massas por Ionização por Electrospray , Isótopos de Enxofre
14.
J Proteome Res ; 18(3): 803-813, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30557026

RESUMO

Data-independent acquisition (DIA) is a powerful mass spectrometric technique to perform both protein identification and quantification of complex protein samples. Setting up DIA methods on Orbitrap analyzers requires a thorough overview of the actions the Orbitrap mass spectrometers carry out. This Tutorial is written with the intention to give an overview of the important parameters to consider as well as which measurements to carry out to get the most out of your DIA method when setting it up on an Orbitrap mass analyzer. Instead of giving the optimal DIA settings, all steps in the construction and optimization of the DIA method are shown and discussed in a way that allows tailored DIA methods. They key steps are building the spectral library after sample fractionation, deciding upon the number of data points per chromatographic peak, determining the scan times of each mass spectrometric step, constructing various DIA methods using these data, and evaluating their performance. This proposed DIA method development strategy was tested on digested lysates from Pseudomonas aeruginosa and compared with conventional DDA analysis to put the DIA results into perspective.


Assuntos
Espectrometria de Massas/métodos , Proteínas/análise , Proteômica/métodos , Proteínas de Bactérias/análise , Espectrometria de Massas/instrumentação , Métodos , Proteômica/instrumentação , Pseudomonas aeruginosa/química
15.
J Biol Chem ; 293(23): 8861-8873, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29669809

RESUMO

Integral membrane proteins are prone to aggregation and misfolding in aqueous environments and therefore require binding by molecular chaperones during their biogenesis. Chloroplast signal recognition particle 43 (cpSRP43) is an ATP-independent chaperone required for the biogenesis of the most abundant class of membrane proteins, the light-harvesting chlorophyll a/b-binding proteins (LHCPs). Previous work has shown that cpSRP43 specifically recognizes an L18 loop sequence conserved among LHCP paralogs. However, how cpSRP43 protects the transmembrane domains (TMDs) of LHCP from aggregation was unclear. In this work, alkylation-protection and site-specific cross-linking experiments found that cpSRP43 makes extensive contacts with all the TMDs in LHCP. Site-directed mutagenesis identified a class of cpSRP43 mutants that bind tightly to the L18 sequence but are defective in chaperoning full-length LHCP. These mutations mapped to hydrophobic surfaces on or near the bridging helix and the ß-hairpins lining the ankyrin repeat motifs of cpSRP43, suggesting that these regions are potential sites for interaction with the client TMDs. Our results suggest a working model for client protein interactions in this membrane protein chaperone.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Mapas de Interação de Proteínas , Partícula de Reconhecimento de Sinal/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Ligação à Clorofila/química , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Mutação Puntual , Agregados Proteicos , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética
16.
Proc Natl Acad Sci U S A ; 113(5): E597-605, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787849

RESUMO

Microbial quiescence and slow growth are ubiquitous physiological states, but their study is complicated by low levels of metabolic activity. To address this issue, we used a time-selective proteome-labeling method [bioorthogonal noncanonical amino acid tagging (BONCAT)] to identify proteins synthesized preferentially, but at extremely low rates, under anaerobic survival conditions by the opportunistic pathogen Pseudomonas aeruginosa. One of these proteins is a transcriptional regulator that has no homology to any characterized protein domains and is posttranscriptionally up-regulated during survival and slow growth. This small, acidic protein associates with RNA polymerase, and chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing suggests that the protein associates with genomic DNA through this interaction. ChIP signal is found both in promoter regions and throughout the coding sequences of many genes and is particularly enriched at ribosomal protein genes and in the promoter regions of rRNA genes. Deletion of the gene encoding this protein affects expression of these and many other genes and impacts biofilm formation, secondary metabolite production, and fitness in fluctuating conditions. On the basis of these observations, we have designated the protein SutA (survival under transitions A).


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo , Anaerobiose , Biofilmes , RNA Polimerases Dirigidas por DNA/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Processamento Pós-Transcricional do RNA , Ribossomos/genética , Transcrição Gênica , Regulação para Cima
17.
J Biol Chem ; 292(1): 386-396, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27895118

RESUMO

The signal recognition particle (SRP) is an essential ribonucleoprotein particle that mediates the co-translational targeting of newly synthesized proteins to cellular membranes. The SRP RNA is a universally conserved component of SRP that mediates key interactions between two GTPases in SRP and its receptor, thus enabling rapid delivery of cargo to the target membrane. Notably, this essential RNA is bypassed in the chloroplast (cp) SRP of green plants. Previously, we showed that the cpSRP and cpSRP receptor GTPases (cpSRP54 and cpFtsY, respectively) interact efficiently by themselves without the SRP RNA. Here, we explore the molecular mechanism by which this is accomplished. Fluorescence analyses showed that, in the absence of SRP RNA, the M-domain of cpSRP54 both accelerates and stabilizes complex assembly between cpSRP54 and cpFtsY. Cross-linking coupled with mass spectrometry and mutational analyses identified a new interaction between complementarily charged residues on the cpFtsY G-domain and the vicinity of the cpSRP54 M-domain. These residues are specifically conserved in plastids, and their evolution coincides with the loss of SRP RNA in green plants. These results provide an example of how proteins replace the functions of RNA during evolution.


Assuntos
Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Plastídeos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Sequência de Aminoácidos , Proteínas de Cloroplastos/química , Cristalografia por Raios X , Evolução Molecular , GTP Fosfo-Hidrolases/química , Filogenia , Ligação Proteica , Conformação Proteica , Transporte Proteico , Homologia de Sequência de Aminoácidos , Partícula de Reconhecimento de Sinal/química
18.
J Am Chem Soc ; 140(37): 11800-11810, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30145881

RESUMO

Here we characterize the [Fe4S4] cluster nitrosylation of a DNA repair enzyme, endonuclease III (EndoIII), using DNA-modified gold electrochemistry and protein film voltammetry, electrophoretic mobility shift assays, mass spectrometry of whole and trypsin-digested protein, and a variety of spectroscopies. Exposure of EndoIII to nitric oxide under anaerobic conditions transforms the [Fe4S4] cluster into a dinitrosyl iron complex, [(Cys)2Fe(NO)2]-, and Roussin's red ester, [(µ-Cys)2Fe2(NO)4], in a 1:1 ratio with an average retention of 3.05 ± 0.01 Fe per nitrosylated cluster. The formation of the dinitrosyl iron complex is consistent with previous reports, but the Roussin's red ester is an unreported product of EndoIII nitrosylation. Hyperfine sublevel correlation (HYSCORE) pulse EPR spectroscopy detects two distinct classes of NO with 14N hyperfine couplings consistent with the dinitrosyl iron complex and reduced Roussin's red ester. Whole-protein mass spectrometry of EndoIII nitrosylated with 14NO and 15NO support the assignment of a protein-bound [(µ-Cys)2Fe2(NO)4] Roussin's red ester. The [Fe4S4]2+/3+ redox couple of DNA-bound EndoIII is observable using DNA-modified gold electrochemistry, but nitrosylated EndoIII does not display observable redox activity using DNA electrochemistry on gold despite having a similar DNA-binding affinity as the native protein. However, direct electrochemistry of protein films on graphite reveals the reduction potential of native and nitrosylated EndoIII to be 127 ± 6 and -674 ± 8 mV vs NHE, respectively, corresponding to a shift of approximately -800 mV with cluster nitrosylation. Collectively, these data demonstrate that DNA-bound redox activity, and by extension DNA-mediated charge transport, is modulated by [Fe4S4] cluster nitrosylation.


Assuntos
Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/metabolismo , Compostos Nitrosos/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/biossíntese , Desoxirribonuclease (Dímero de Pirimidina)/isolamento & purificação , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/isolamento & purificação , Ferro/química , Estrutura Molecular , Óxidos de Nitrogênio/química , Compostos Nitrosos/química , Oxirredução
19.
Environ Microbiol ; 20(2): 671-692, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29159966

RESUMO

While the collective impact of marine viruses has become more apparent over the last decade, a deeper understanding of virus-host dynamics and the role of viruses in nutrient cycling would benefit from direct observations at the single-virus level. We describe two new complementary approaches - stable isotope probing coupled with nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorescence-based biorthogonal non-canonical amino acid tagging (BONCAT) - for studying the activity and biogeochemical influence of marine viruses. These tools were developed and tested using several ecologically relevant model systems (Emiliania huxleyi/EhV207, Synechococcus sp. WH8101/Syn1 and Escherichia coli/T7). By resolving carbon and nitrogen enrichment in viral particles, we demonstrate the power of nanoSIMS tracer experiments in obtaining quantitative estimates for the total number of viruses produced directly from a particular production pathway (by isotopically labelling host substrates). Additionally, we show through laboratory experiments and a pilot field study that BONCAT can be used to directly quantify viral production (via epifluorescence microscopy) with minor sample manipulation and no dependency on conversion factors. This technique can also be used to detect newly synthesized viral proteins. Together these tools will help fill critical gaps in our understanding of the biogeochemical impact of viruses in the ocean.


Assuntos
Interações entre Hospedeiro e Microrganismos , Marcação por Isótopo , Espectrometria de Massa de Íon Secundário , Vírus , Microbiologia da Água , Aminoácidos/análise , Fluorescência , Haptófitas , Synechococcus , Fenômenos Fisiológicos Virais
20.
Biochem Biophys Res Commun ; 503(3): 1599-1604, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30049443

RESUMO

SynGAP is a Ras and Rap GTPase-activating protein (GAP) found in high concentration in the postsynaptic density (PSD) fraction from mammalian forebrain where it binds to PDZ domains of PSD-95. Phosphorylation of pure recombinant synGAP by Ca2+/calmodulin-dependent protein kinase II (CaMKII) shifts the balance of synGAP's GAP activity toward inactivation of Rap1; whereas phosphorylation by cyclin-dependent kinase 5 (CDK5) has the opposite effect, shifting the balance toward inactivation of HRas. These shifts in balance contribute to regulation of the numbers of surface AMPA receptors, which rise during synaptic potentiation (CaMKII) and fall during synaptic scaling (CDK5). Polo-like kinase 2 (Plk2/SNK), like CDK5, contributes to synaptic scaling. These two kinases act in concert to reduce the number of surface AMPA receptors following elevated neuronal activity by tagging spine-associated RapGAP protein (SPAR) for degradation, thus raising the level of activated Rap. Here we show that Plk2 also phosphorylates and regulates synGAP. Phosphorylation of synGAP by Plk2 stimulates its GAP activity toward HRas by 65%, and toward Rap1 by 16%. Simultaneous phosphorylation of synGAP by Plk2 and CDK5 at distinct sites produces an additive increase in GAP activity toward HRas (∼230%) and a smaller, non-additive increase in activity toward Rap1 (∼15%). Dual phosphorylation also produces an increase in GAP activity toward Rap2 (∼40-50%), an effect not produced by either kinase alone. As we previously observed for CDK5, addition of Ca2+/CaM causes a substrate-directed doubling of the rate and stoichiometry of phosphorylation of synGAP by Plk2, targeting residues also phosphorylated by CaMKII. In summary, phosphorylation by Plk2, like CDK5, shifts the ratio of GAP activity of synGAP to produce a greater decrease in active Ras than in active Rap, which would produce a shift toward a decrease in the number of surface AMPA receptors in neuronal dendrites.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Células COS , Chlorocebus aethiops , Humanos , Espectrometria de Massas , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA