Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Yeast ; 39(3): 230-240, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34648204

RESUMO

Orotic acid (OA) is an intermediate of the pyrimidine biosynthesis with high industrial relevance due to its use as precursor for production of biochemical pyrimidines or its use as carrier molecule in drug formulations. It can be produced by fermentation of microorganisms with engineered pyrimidine metabolism. In this study, we surprisingly discovered the yeast Yarrowia lipolytica as a powerful producer of OA. The overproduction of OA in the Y. lipolytica strain PO1f was found to be caused by the deletion of the URA3 gene which prevents the irreversible decarboxylation of OA to uridine monophosphate. It was shown that the lack of orotidine-5'-phosphate decarboxylase was the reason for the accumulation of OA inside the cell since a rescue mutant of the URA3 deletion in Y. lipolytica PO1f completely prevented the OA secretion into the medium. In addition, pyrimidine limitation in the cell massively enhanced the OA accumulation followed by secretion due to intense overflow metabolism during bioreactor cultivations. Accordingly, supplementation of the medium with 200 mg/L uracil drastically decreased the OA overproduction by 91%. OA productivity was further enhanced in fed-batch cultivation with glucose and ammonium sulfate feed to a maximal yield of 9.62 ± 0.21 g/L. Y. lipolytica is one of three OA overproducing yeasts described in the literature so far, and in this study, the highest productivity was shown. This work demonstrates the potential of Y. lipolytica as a possible production organism for OA and provides a basis for further metabolic pathway engineering to optimize OA productivity.


Assuntos
Yarrowia , Engenharia Metabólica , Ácido Orótico , Pirimidinas/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
2.
Microb Cell Fact ; 19(1): 100, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393258

RESUMO

BACKGROUND: The secretory production of recombinant proteins in yeast simplifies isolation and purification but also faces possible complications due to the complexity of the secretory pathway. Therefore, correct folding, maturation and intracellular transport of the recombinant proteins are important processing steps with a higher effort needed for complex and large proteins. The aim of this study was to elucidate the secretion potential of Yarrowia lipolytica for low and high molecular weight ß-glycosidases in a comparative cultivation approach. RESULTS: A low sized ß-glucosidase from Pyrococcus furiosus (CelB; 55 kDa) and a large sized ß-galactosidase isolated from the metagenome (M1; 120 kDa) were integrated into the acid extracellular protease locus using the CRISPR-Cas9 system to investigate the size dependent secretion of heterologous proteins in Y. lipolytica PO1f. The recombinant strains were cultivated in the bioreactor for 78 h and the extra- and intracellular enzyme activities were determined. The secretion of CelB resulted in an extracellular volumetric activity of 187.5 µkatoNPGal/Lmedium, while a volumetric activity of 2.98 µkatoNPGal/Lmedium was measured during the M1 production. However, when the amount of functional intra- and extracellular enzyme was investigated, the high molecular weight M1 (85%) was secreted more efficiently than CelB (27%). Real-time PCR experiments showed a linear correlation between the transcript level and extracellular activity for CelB, while a disproportional high mRNA level was observed regarding M1. Interestingly, mass spectrometry data revealed the unexpected secretion of two endogenous intracellular glycolytic enzymes, which is reported for the first time for Y. lipolytica. CONCLUSION: The results of this study provide deeper insights into the secretion potential of Y. lipolytica. A secretion limitation for the low-size CelB was observed, while the large size M1 enzyme was produced in lower amounts but was secreted efficiently. It was shown for the first time that Y. lipolytica is a promising host for the secretion of heterologous high molecular weight proteins (> 100 kDa), although the total secreted amount has to be increased further.


Assuntos
Proteínas Arqueais/biossíntese , Glucosidases/biossíntese , Yarrowia/metabolismo , Proteínas Arqueais/classificação , Reatores Biológicos , Glucosidases/classificação , Peso Molecular , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Proteínas Recombinantes/biossíntese
3.
Appl Microbiol Biotechnol ; 102(6): 2709-2721, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29450617

RESUMO

Kluyveromyces lactis is a common fungal microorganism used for the production of enzyme preparations such as ß-galactosidases (native) or chymosin (recombinant). It is generally important that enzyme preparations have no unwanted side activities. In the case of ß-galactosidase preparations produced from K. lactis, an unwanted side activity could be the presence of arylsulfatase (EC 3.1.6.1). Due to the action of arylsulfatase, an unpleasant "cowshed-like" off-flavor would occur in the final product. The best choice to avoid this is to use a yeast strain without this activity. Interestingly, we found that certain natural K. lactis strains express arylsulfatases, which only differ in one amino acid at position 139. The result of this difference is that K. lactis DSM 70799 (expressing R139 variant) shows no arylsulfatase activity, unlike K. lactis GG799 (expressing S139 variant). After recombinant production of both variants in Escherichia coli, the R139 variant remains inactive, whereas the S139 variant showed full activity. Mass spectrometric analyses showed that the important posttranslational modification of C56 to formylglycine was not found in the R139 variant. By contrast, the C56 residue of the S139 variant was modified. We further investigated the packing and secondary structure of the arylsulfatase variants using optical spectroscopy, including fluorescence and circular dichroism. We found out that the inactive R139 variant exhibits a different structure regarding folding and packing compared to the active S139 variant. The importance of the amino acid residue 139 was documented further by the construction of 18 more variants, whereof only ten showed activity but always reduced compared to the native S139 variant.


Assuntos
Arilsulfatases/genética , Arilsulfatases/metabolismo , Glicina/análogos & derivados , Kluyveromyces/enzimologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Arilsulfatases/química , Biotransformação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glicina/metabolismo , Kluyveromyces/genética , Espectrometria de Massas , Estrutura Secundária de Proteína , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA