Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Opt Express ; 31(9): 14278-14285, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157295

RESUMO

The unidirectional flow of electrons that takes place in a conventional electronic diode has been a cornerstone in the development of the field of electronics. Achieving an equivalent one-way flow for light has been a long-standing problem. While a number of concepts have been suggested recently, attaining a unidirectional flow of light in a two-port system (e.g., a waveguiding configuration) is still challenging. Here, we present what we believe to be a novel approach for breaking reciprocity and achieving one-way flow of light. Taking a nanoplasmonic waveguide as an example, we show that a combination of time-dependent interband optical transitions, when in systems exhibiting a backward wave flow, can yield light transmission strictly in one direction. In our configuration, the energy flow is unidirectional: light is fully reflected in one direction of propagation, and is unperturbed in the other. The concept can find use in a range of applications including communications, smart windows, thermal radiation management, and solar energy harvesting.

2.
Sensors (Basel) ; 23(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514779

RESUMO

Over the past decade, deep learning (DL) has been applied in a large number of optical sensors applications. DL algorithms can improve the accuracy and reduce the noise level in optical sensors. Optical sensors are considered as a promising technology for modern intelligent sensing platforms. These sensors are widely used in process monitoring, quality prediction, pollution, defence, security, and many other applications. However, they suffer major challenges such as the large generated datasets and low processing speeds for these data, including the high cost of these sensors. These challenges can be mitigated by integrating DL systems with optical sensor technologies. This paper presents recent studies integrating DL algorithms with optical sensor applications. This paper also highlights several directions for DL algorithms that promise a considerable impact on use for optical sensor applications. Moreover, this study provides new directions for the future development of related research.

3.
Sensors (Basel) ; 22(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35161897

RESUMO

This work presents a rigorous and generic sensitivity analysis of silicon nitride on silicon dioxide strip waveguide for virus detection. In general, by functionalizing the waveguide surface with a specific antibodies layer, we make the optical sensor sensitive only to a particular virus. Unlike conventional virus detection methods such as polymerase chain reaction (PCR), integrated refractive index (RI) optical sensors offer cheap and mass-scale fabrication of compact devices for fast and straightforward detection with high sensitivity and selectivity. Our numerical analysis includes a wide range of wavelengths from visible to mid-infrared. We determined the strip waveguide's single-mode dimensions and the optimum dimensions that maximize the sensitivity to the virus layer attached to its surface at each wavelength using finite difference eigenmode (FDE) solver. We also compared the strip waveguide with the widely used slot waveguide. Our theoretical study shows that silicon nitride strip waveguide working at lower wavelengths is the optimum choice for virus detection as it maximizes both the waveguide sensitivity (Swg) and the figure of merit (FOM) of the sensor. The optimized waveguides are well suited for a range of viruses with different sizes and refractive indices. Balanced Mach-Zehnder interferometer (MZI) sensors were designed using FDE solver and photonic circuit simulator at different wavelengths. The designed sensors show high FOM at λ = 450 nm ranging from 500 RIU-1 up to 1231 RIU-1 with LMZI = 500 µm. Different MZI configurations were also studied and compared. Finally, edge coupling from the fiber to the sensor was designed, showing insertion loss (IL) at λ = 450 nm of 4.1 dB for the design with FOM = 500 RIU-1. The obtained coupling efficiencies are higher than recently proposed fiber couplers.


Assuntos
Técnicas Biossensoriais , Óptica e Fotônica , Refratometria , Compostos de Silício
4.
Appl Opt ; 59(23): 6881-6887, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788779

RESUMO

In this paper, a novel and efficient approach for solving the beam propagation method (BPM) governing equation is proposed. The approach is based on the reformulation of the beam propagation equation to solve real system matrices only at each propagation step. The reformulated equation utilizes a leap-frog (LF) technique to couple the real and imaginary components of the field in an iterative scheme. The method yields higher processing speed by at least 30% more than that of the conventional BPM method. To validate the proposed LF-BPM method, different photonic systems, including directional couplers and multimode interferometers, are simulated. Results have been experimentally verified by comparing them with results measured for fabricated micro-photonic structures. A stability analysis was performed to study the effect of the design parameters on the performance of the proposed scheme. The proposed LF-BPM approach is considered a promising technique for efficient modeling of optical structures.

5.
Appl Opt ; 55(10): 2780-90, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27139685

RESUMO

In this paper, new models based on an artificial neural network (ANN) are developed to predict the propagation characteristics of plasmonic nanostrip and coupled nanostrips transmission lines. The trained ANNs are capable of providing the required propagation characteristics with good accuracy and almost instantaneously. The nonlinear mapping performed by the trained ANNs is written as closed-form expressions, which facilitate the direct use of the results obtained in this research. The propagation characteristics of the investigated transmission lines include the effective refractive index and the characteristic impedance. The time needed to simulate 1000 different versions of the transmission line structure is about 48 h, using a full-wave electromagnetic solver compared to 3 s using the developed ANN model.

6.
Sci Rep ; 14(1): 3780, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360898

RESUMO

In the need for a more compact and efficient optical phased array with a wide steering beam for LIDAR applications, a wide steering array with high resolution is desirable. However, in the published work, a trade-off is often made for one over another. Apodized grating antennas have shown good efficiency with a compact size and wide beam profile, which improve optical phased array beam steering capability and are also compatible with the CMOS silicon photonics process. A promising studies shows enhancement in steering range with good resolution utilizing a non-uniform optical phased array. In this work, we present two highly efficient optical antennas with 94% and 93.5% upward power at the center frequency for the first and second antenna respectively, exceeding state-of-the-artwork to the best of our knowledge, and wide full-width half maximum of 8.88° x 78.05° and 7.53° x 69.85° in elevation and azimuthal planes, respectively. Both antennas provide a broad bandwidth across the 1400-1700 nm wavelength range with more than 80% efficiency in the S, C, and L bands. To overcome the limited scan ranges and small aperture size, a two-dimensional non-uniform array of 10 × 10 elements is utilized to increase the beam steering capability. A genetic algorithm is used to optimize the position of array elements, resulting in an aliasing-free array with a wide steering range of 160° with beam width 0.5° and consistent -11 dB maximum side lobe level across the steering range.

7.
Sci Rep ; 14(1): 13578, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866859

RESUMO

Our research focuses on enhancing the broadband absorption capability of organic solar cells (OSCs) by integrating plasmonic nanostructures made of Titanium nitride (TiN). Traditional OSCs face limitations in absorption efficiency due to their thickness, but incorporating plasmonic nanostructures can extend the path length of light within the active material, thereby improving optical efficiency. In our study, we explore the use of refractory plasmonics, a novel type of nanostructure, with TiN as an example of a refractory metal. TiN offers high-quality localized surface plasmon resonance in the visible spectrum and is cost-effective, readily available, and compatible with CMOS technology. We conducted detailed numerical simulations to optimize the design of nanostructured OSCs, considering various shapes and sizes of nanoparticles within the active layer (PM6Y6). Our investigation focused on different TiN plasmonic nanostructures such as nanospheres, nanocubes, and nanocylinders, analyzing their absorption spectra in a polymer environment. We assessed the impact of their incorporation on the absorbed power and short-circuit current (Jsc) of the organic solar cell.

8.
Opt Express ; 21(22): 26311-22, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216854

RESUMO

We present a novel technique for vertical coupling of light guided by nanoscale plasmonic slot waveguides (PSWs). A triangularly-shaped plasmonic slot waveguide rotator is exploited to attain such coupling with a good efficiency over a wide bandwidth. Using this approach, light propagating in a horizontal direction is efficiently coupled to propagate in the vertical direction and vice versa. We also propose a power divider configuration to evenly split a vertically coupled light wave to two horizontal channels. A detailed parametric study of the triangular rotator is demonstrated with multiple configurations analyzed. This structure is suitable for efficient coupling in multilevel nano circuit environment.

9.
Sci Rep ; 13(1): 12311, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516742

RESUMO

Sensing in the mid infrared spectral range is highly desirable for the detection and monitoring of different gases. We hereby propose a CMOS compatible silicon-based sensor that operates at (3.5-10 µm) within the mid infrared range. The silicon material is doped to the level that shifts its plasmonic resonance to 3 µm wavelength. The sensor device comprises an in-line rectangular microcavity and a stub microcavity resonator. The resonance frequencies/wavelengths of the two resonators were studied with different design dimensions. When the two resonators are designed to resonate at close frequencies, the interesting Fano resonance with its distinct and sharp line shape is excited due to the interference between the two resonance profiles. Fano resonance is useful for highly sensitive measurements due to its abrupt intensity changing profile. The sensor is studied and analyzed using Finite Difference Element and 2D Finite Difference Time Domain methods. The sensor's performance is characterized by its high sensitivity of 6000 nm/RIU, FOM of 353, and limited insertion loss of 0.45 dB around 6.5 µm operation wavelength. Furthermore, we develop the sensor for simultaneously detecting formaldehyde CH2O and nitrous oxide N2O gases from their strong absorption bands at 3.6 µm and 4.46 µm wavelengths, respectively.

10.
Sci Rep ; 13(1): 18827, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914727

RESUMO

This work presents a high-efficiency achromatic meta-lens based on inverse design with topology optimization methodology. The meta-lens design with high numerical aperture values (NA = 0.7, NA = 0.8, and NA = 0.9) optimized along wavelength range starts from 550 to 800 nm, then the direct solver along the full extended wavelength band from 400 to 800 nm that applied to the final optimized structures under the three conditions of the high numerical apertures have high focusing efficiency for the all conditions. The optimization problem is based on Kreisselmeier-Steinhauser (k-s) objective function, leading to approximately stable response over the broadband bandwidths of the three designs.

11.
Sci Rep ; 13(1): 20593, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996518

RESUMO

The use of annular one-dimensional (1D) photonic crystals (PCs) for salinity sensing is studied in this research. Annular 1D-PCs provide small and integrated structures that facilitate the creation of portable and miniaturized sensor equipment appropriate for field use. In order to generate annular 1D-PCs, the research explores the finite element method (FEM) simulation technique utilizing the COMSOL Multiphysics approach, highlighting the significance of exact control over layer thickness and uniformity. Furthermore, we construct a 1D annular PCs structure in the form [Formula: see text], where A is silicon ([Formula: see text]) and B is silicon dioxide ([Formula: see text]) of 40 nm and 70 nm, respectively, with a number of periods equal to 9. By incorporating a central defect layer of saline water (220 nm thickness), the sensor achieves optimum performance at normal incidence with a sensitivity (S) of [Formula: see text], a quality factor (Q) of 10.22, and a figure of merit (FOM) of [Formula: see text]. The design that is suggested has several advantages over past work on planners and annular 1D-PCs, including ease of implementation, performance at normal incidence, and high sensitivity.

12.
Sci Rep ; 13(1): 5793, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031268

RESUMO

In this work, we present the analysis and design of an efficient nanoantenna sensor based on localized surface plasmon resonance (LSPR). A high refractive index dielectric nanostructure can exhibit strong radiation resonances with high electric field enhancement inside the gap. The use of silicon instead of metals as the material of choice in the design of such nanoantennas is advantageous since it allows the integration of nanoantenna-based structures into integrated-optoelectronics circuits manufactured using common fabrication methods in the electronic industry. It also allows the suggested devices to be mass-produced at a low cost. The proposed nanoantenna consists of a highly doped silicon nanorod and is placed on a dielectric substrate. Different shapes and different concentrations of doping for the nanoantenna structures that are resonant in the mid-infrared region are investigated and numerically analyzed. The wavelength of the enhancement peak as well as the enhancement level itself vary as the surrounding material changes. As a result, sensors may be designed to detect molecules via their characteristic vibrational transitions. The 3D FDTD approach via Lumerical software is used to obtain the numerical results. The suggested nanoantennas exhibit ultra-high local field enhancement inside the gap of the dipole structure.

13.
Sci Rep ; 13(1): 15545, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730905

RESUMO

Perfect absorbers can be used in photodetectors, thermal imaging, microbolometers, and thermal photovoltaic solar energy conversions. The spectrum of Mid-infrared (MIR) wavelengths offers numerous advantages across a wide range of applications. In this work, we propose a fractal MIR broadband absorber which is composed of three layers: metal, dielectric, and metal (MDM), with the metal being considered as n-type doped silicon (D-Si) and the dielectric is silicon carbide (SiC). The architectural design was derived from the Sierpinski carpet fractal, and different building blocks were simulated to attain optimal absorption. The 3D finite element method (FEM) approach using COMSOL Multiphysics software is used to obtain numerical results. The suggested fractal absorber exhibits high absorption enhancement for MIR in the range between 3 and 9 µm. D-Si exhibits superior performance compared to metals in energy harvesting applications that utilize plasmonics at the mid-infrared range. Typically, semiconductors exhibit rougher surfaces than noble metals, resulting in lower scattering losses. Moreover, silicon presents various advantages, including compatibility with complementary metal-oxide-semiconductor (CMOS) and simple manufacturing through conventional silicon fabrication methods. In addition, the utilization of doped silicon material in the mid-IR region facilitates the development of microscale integrated plasmonic devices.

14.
Sci Rep ; 13(1): 14948, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696834

RESUMO

Novel CuO/Ag nanocomposites added zeolite (CAZ) were successfully fabricated, and their effectiveness as an antibacterial on S. aureus and MB removal was evaluated. EDX, XRD, and FTIR confirm the presence of the elemental compositions of CAZ. Friable CuO nanorods (10-70 nm in diameter) existed on the surface of the zeolite. Pure zeolite had a higher band gap (5.433 eV) and lower MB removal efficiency than CAZ. The adsorption method by CAZ was more effective at removing MB than photodegradation. 0.10 CAZ had the highest removal effectiveness (~ 99%) and adsorption capacity (~ 70.4 mg g-1) of MB. The inhibitory zone diameter for 0.005 CAZ against S. aureus was 20 mm, while 0.01 CAZ had a diameter of 17 mm. Azithromycin, ceftriaxone, and erythromycin antibiotics demonstrated lower or no efficacy against S. aureus than CAZ. Significant antibacterial activities and wastewater treatment were achieved by CAZ. The combination of photodegradation and adsorption enhanced pollutant removal. It will be interesting to study further the optimal molar ratio for MB removal (0.10 CAZ) in future investigations.


Assuntos
Nanocompostos , Zeolitas , Staphylococcus aureus , Antibacterianos/farmacologia
15.
Sci Rep ; 13(1): 10314, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365289

RESUMO

ZnS quantum dots (QDs) were fabricated using the co-precipitation technique with no capping agent. The effects of different annealing temperatures (non-annealed, 240 °C and 340 °C for 2 h) on the structural and optical characteristics of ZnS QDs are reported. The samples were examined by XRD, TEM, PL, FTIR, and UV-Vis. An increase in annealing temperature led to an increase in the dot size and a lowering of the energy band gap (EG). The average crystallite size, D of ZnS was between 4.4 and 5.6 nm. The ZnS QDs showed a band gap of 3.75, 3.74 and 3.72 eV for non-annealed, 240 °C, and 340 °C annealed samples. The reflection spectra increased in the visible light and decreased in UV region with an increase in annealing temperature. This work showed that the band gap and size of ZnS QDs could be tuned by varying the annealing temperature.

16.
Opt Express ; 20(11): 12473-86, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714235

RESUMO

We propose a surface plasmon polarization-controlled beam splitter based on plasmonic slot waveguides (PSWs). It couples light of different polarizations from a silicon nanowire into multilevel plasmonic networks. Two orthogonal PSWs are utilized as the guiding waveguides for each polarization. The proposed structure overcomes inherent polarization limitation in plasmonic structures by providing multilevel optical signal processing. This ability of controlling polarization can be exploited to achieve 3-D multilevel plasmonic circuits and polarization controlled chip to chip channel. Our device is of a compact size and a wide band operation. The device utilizes both quasi-TE and quasi-TM polarizations to allow for increased optical processing capability. The crosstalk is minimal between the two polarizations propagating in two different levels. We achieve good transmission efficiency at a wavelength of 1.55 µm for different polarizations. We analyze and simulate the structure using the FDTD method. The proposed device can be utilized in integrated chips for optical signal processing and optical computations.


Assuntos
Nanotecnologia/instrumentação , Nanotubos/química , Nanotubos/ultraestrutura , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
17.
Sci Rep ; 12(1): 14802, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045138

RESUMO

Thermo-electric generation offers to be a solid candidate for both dealing with the temperature problems of photo-voltaic cells and increasing its total output power. However, it requires an efficient broadband absorber to harness the power found in the near and mid-infrared regions. In this work, we discuss a new structure of nanoprisms that are made of doped silicon that acts as an ultra-broadband absorber in both regions. We also discuss the effect of the doping concentration. Additionally, we study the effect of a pure silicon thin film on top of the prisms. Finally, we're able to find an optimized structure that can absorb 92.6% of the input power from 1 to [Formula: see text]m.

18.
Biology (Basel) ; 11(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625349

RESUMO

Biosensors have globally been considered as biomedical diagnostic tools required in abundant areas including the development of diseases, detection of viruses, diagnosing ecological pollution, food monitoring, and a wide range of other diagnostic and therapeutic biomedical research. Recently, the broadly emerging and promising technique of plasmonic resonance has proven to provide label-free and highly sensitive real-time analysis when used in biosensing applications. In this review, a thorough discussion regarding the most recent techniques used in the design, fabrication, and characterization of plasmonic biosensors is conducted in addition to a comparison between those techniques with regard to their advantages and possible drawbacks when applied in different fields.

19.
Sci Rep ; 12(1): 9343, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35660767

RESUMO

In this work we propose a method for on-chip detection of the complex refractive index of the sensing medium at multiple wavelengths for selective sensing. For the optical sensor to be selective, i.e. able to determine the substance present in the medium, either surface functionalization or absorption spectroscopy is often used. Surface functionalization is a complex process and is mainly limited to biological media. On the other hand, absorption spectroscopy is not suitable for on-chip sensing with micrometer dimensions as this will result in poor sensitivity, especially when working far from the substance absorption peaks. Here, we detect the dispersion of both the real n and imaginary k parts of the refractive index which are unique for each substance. This is done using a single micro-ring resonator (MRR) that exhibits multiple resonances over the operating wavelength range. The real and imaginary parts of the medium refractive index are determined at each resonance using the resonance wavelength and the absorption coefficient, respectively. In addition, using this technique the concentration composition of a multi-element medium can be determined by solving a system of linear equations that corresponds to the different wavelengths (resonances). We designed a silicon-on-insulator (SOI) ring-resonator operating in the near-infrared region from λ = 1.46 µm to λ = 1.6 µm. The ring exhibits 11 resonances over the 140 nm operating wavelength range where the corresponding medium refractive index is obtained. This design can detect four different substances namely, methanol, ethanol, propanol, and water. An average error of less than 0.0047% and 1.65% in the detection of the real and imaginary parts, respectively were obtained. Finally, the concentration composition of different multi-element media were successfully determined using the least square method with 97.4% detection accuracy.


Assuntos
Refratometria , Silício , Análise Espectral
20.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35159830

RESUMO

Electrical interconnects are becoming a bottleneck in the way towards meeting future performance requirements of integrated circuits. Moore's law, which observes the doubling of the number of transistors in integrated circuits every couple of years, can no longer be maintained due to reaching a physical barrier for scaling down the transistor's size lower than 5 nm. Heading towards multi-core and many-core chips, to mitigate such a barrier and maintain Moore's law in the future, is the solution being pursued today. However, such distributed nature requires a large interconnect network that is found to consume more than 80% of the microprocessor power. Optical interconnects represent one of the viable future alternatives that can resolve many of the challenges faced by electrical interconnects. However, reaching a maturity level in optical interconnects that would allow for the transition from electrical to optical interconnects for intra-chip and inter-chip communication is still facing several challenges. A review study is required to compare the recent developments in the optical interconnects with the performance requirements needed to reach the required maturity level for the transition to happen. This review paper dissects the optical interconnect system into its components and explains the foundational concepts behind the various passive and active components along with the performance metrics. The performance of different types of on-chip lasers, grating and edge couplers, modulators, and photodetectors are compared. The potential of a slot waveguide is investigated as a new foundation since it allows for guiding and confining light into low index regions of a few tens of nanometers in cross-section. Additionally, it can be tuned to optimize transmissions over 90° bends. Hence, high-density opto-electronic integrated circuits with optical interconnects reaching the dimensions of their electrical counterparts are becoming a possibility. The latest complete optical interconnect systems realized so far are reviewed as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA