Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Appl Clin Med Phys ; 22(7): 177-187, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34101349

RESUMO

Rigorous radiotherapy quality surveillance and comprehensive outcome assessment require electronic capture and automatic abstraction of clinical, radiation treatment planning, and delivery data. We present the design and implementation framework of an integrated data abstraction, aggregation, and storage, curation, and analytics software: the Health Information Gateway and Exchange (HINGE), which collates data for cancer patients receiving radiotherapy. The HINGE software abstracts structured DICOM-RT data from the treatment planning system (TPS), treatment data from the treatment management system (TMS), and clinical data from the electronic health records (EHRs). HINGE software has disease site-specific "Smart" templates that facilitate the entry of relevant clinical information by physicians and clinical staff in a discrete manner as part of the routine clinical documentation. Radiotherapy data abstracted from these disparate sources and the smart templates are processed for quality and outcome assessment. The predictive data analyses are done on using well-defined clinical and dosimetry quality measures defined by disease site experts in radiation oncology. HINGE application software connects seamlessly to the local IT/medical infrastructure via interfaces and cloud services and performs data extraction and aggregation functions without human intervention. It provides tools to assess variations in radiation oncology practices and outcomes and determines gaps in radiotherapy quality delivered by each provider.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Documentação , Humanos , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador , Software
2.
J Biomed Inform ; 109: 103527, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32777484

RESUMO

PURPOSE: To present a Machine Learning pipeline for automatically relabeling anatomical structure sets in the Digital Imaging and Communications in Medicine (DICOM) format to a standard nomenclature that will enable data abstraction for research and quality improvement. METHODS: DICOM structure sets from approximately 1200 lung and prostate cancer patients across 40 treatment centers were used to build predictive models to automate the relabeling of clinically specified structure labels to standardized labels as defined by the American Association of Physics in Medicine's (AAPM) Task Group 263 (TG-263). Volumetric bitmaps were created based on the delineated volumes and were combined with associated bony anatomy data to build feature vectors. Feature reduction was performed with singular value decomposition and the resulting vectors were used for predicting the label of each structure using five different classifier algorithms on the Apache Spark platform with 5-fold cross-validation. Undersampling methods were used to deal with underlying class imbalance that hindered the performance of classifiers. Experiments were performed on both a curated version of the data, which included only annotated structures, and the non-curated data that included all structures from the original treatment plans. RESULTS: Random Forest provided the highest accuracies with F1 scores of 98.77 for lung and 95.06 for prostate on the curated data sets. Scores were lower with 95.67 for lung and 90.22 for prostate on the non-curated data sets, highlighting some of the challenges of classifying real clinical data. Including bony anatomy data and pooling information from all structures for the same patient both increased accuracies. In some cases, undersampling with k-Means clustering for class balancing improved classifier accuracy but in all experiments it significantly reduced run time compared to random undersampling. CONCLUSION: This work shows that structure sets can be relabeled using our approach with accuracies over 95% for many structure types when presented with curated data. Although accuracies dropped when using the full non-curated data sets, some structure types were still correctly labeled over 90% of the time. With similar results obtained on an external test data set, we can infer that the proposed models are likely to work on other clinical data sets.


Assuntos
Algoritmos , Aprendizado de Máquina , Análise por Conglomerados , Humanos , Masculino
3.
Int J Mol Sci ; 20(15)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366155

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders related to aging. Though several risk factors are shared between these two diseases, the exact relationship between them is still unknown. In this paper, we analyzed how these two diseases relate to each other from the genomic, epigenomic, and transcriptomic viewpoints. Using an extensive literature mining, we first accumulated the list of genes from major genome-wide association (GWAS) studies. Based on these GWAS studies, we observed that only one gene (HLA-DRB5) was shared between AD and PD. A subsequent literature search identified a few other genes involved in these two diseases, among which SIRT1 seemed to be the most prominent one. While we listed all the miRNAs that have been previously reported for AD and PD separately, we found only 15 different miRNAs that were reported in both diseases. In order to get better insights, we predicted the gene co-expression network for both AD and PD using network analysis algorithms applied to two GEO datasets. The network analysis revealed six clusters of genes related to AD and four clusters of genes related to PD; however, there was very low functional similarity between these clusters, pointing to insignificant similarity between AD and PD even at the level of affected biological processes. Finally, we postulated the putative epigenetic regulator modules that are common to AD and PD.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Doença de Parkinson/genética , Redes Reguladoras de Genes , Cadeias HLA-DRB5/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Sirtuína 1/genética
4.
Cancers (Basel) ; 13(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918716

RESUMO

Standardization of radiotherapy structure names is essential for developing data-driven personalized radiotherapy treatment plans. Different types of data are associated with radiotherapy structures, such as the physician-given text labels, geometric (image) data, and Dose-Volume Histograms (DVH). Prior work on structure name standardization used just one type of data. We present novel approaches to integrate complementary types (views) of structure data to build better-performing machine learning models. We present two methods, namely (a) intermediate integration and (b) late integration, to combine physician-given textual structure name features and geometric information of structures. The dataset consisted of 709 prostate cancer and 752 lung cancer patients across 40 radiotherapy centers administered by the U.S. Veterans Health Administration (VA) and the Department of Radiation Oncology, Virginia Commonwealth University (VCU). We used randomly selected data from 30 centers for training and ten centers for testing. We also used the VCU data for testing. We observed that the intermediate integration approach outperformed the models with a single view of the dataset, while late integration showed comparable performance with single-view results. Thus, we demonstrate that combining different views (types of data) helps build better models for structure name standardization to enable big data analytics in radiation oncology.

5.
J Comput Biol ; 28(2): 166-184, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32985908

RESUMO

Clinical factors, including T-stage, Gleason score, and baseline prostate-specific antigen, are used to stratify patients with prostate cancer (PCa) into risk groups. This provides prognostic information for a heterogeneous disease such as PCa and guides treatment selection. In this article, we hypothesize that nonclinical factors may also impact treatment selection and their adherence to treatment guidelines. A total of 552 patients with intermediate- and high-risk PCa treated with definitive radiation with or without androgen deprivation therapy (ADT) between 2010 and 2017 were identified from 34 medical centers within the Veterans Health Administration. Medical charts were manually reviewed, and details regarding each patient's clinical history and treatment were extracted. Support Vector Machine and Random forest-based classification was used to identify clinical and nonclinical predictors of adherence to the treatment guidelines from the National Comprehensive Cancer Network (NCCN). We created models for predicting both initial treatment intent and treatment alterations. Our results demonstrate that besides clinical factors, the center in which the patient was treated (nonclinical factor) played a significant role in adherence to NCCN guidelines. Furthermore, the treatment center served as an important predictor to decide on whether or not to prescribe ADT; however, it was not associated with ADT duration and weakly associated with treatment alterations. Such center-bias motivates further investigation on details of center-specific barriers to both NCCN guideline adherence and on oncological outcomes. In addition, we demonstrate that publicly available data sets, for example, that from Surveillance, Epidemiology, and End Results (SEERs), may not be well equipped to build such predictive models on treatment plans.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Radioterapia/métodos , Sistemas de Apoio a Decisões Clínicas , Humanos , Masculino , Modelos Teóricos , Gradação de Tumores , Estadiamento de Neoplasias , Guias de Prática Clínica como Assunto , Prognóstico , Programa de SEER , Máquina de Vetores de Suporte , Resultado do Tratamento , Estados Unidos , Serviços de Saúde para Veteranos Militares
6.
Healthcare (Basel) ; 8(3)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823971

RESUMO

The Radiotherapy Incident Reporting and Analysis System (RIRAS) receives incident reports from Radiation Oncology facilities across the US Veterans Health Affairs (VHA) enterprise and Virginia Commonwealth University (VCU). In this work, we propose a computational pipeline for analysis of radiation oncology incident reports. Our pipeline uses machine learning (ML) and natural language processing (NLP) based methods to predict the severity of the incidents reported in the RIRAS platform using the textual description of the reported incidents. These incidents in RIRAS are reviewed by a radiation oncology subject matter expert (SME), who initially triages some incidents based on the salient elements in the incident report. To automate the triage process, we used the data from the VHA treatment centers and the VCU radiation oncology department. We used NLP combined with traditional ML algorithms, including support vector machine (SVM) with linear kernel, and compared it against the transfer learning approach with the universal language model fine-tuning (ULMFiT) algorithm. In RIRAS, severities are divided into four categories; A, B, C, and D, with A being the most severe to D being the least. In this work, we built models to predict High (A & B) vs. Low (C & D) severity instead of all the four categories. Models were evaluated with macro-averaged precision, recall, and F1-Score. The Traditional ML machine learning (SVM-linear) approach did well on the VHA dataset with 0.78 F1-Score but performed poorly on the VCU dataset with 0.5 F1-Score. The transfer learning approach did well on both datasets with 0.81 F1-Score on VHA dataset and 0.68 F1-Score on the VCU dataset. Overall, our methods show promise in automating the triage and severity determination process from radiotherapy incident reports.

7.
Healthcare (Basel) ; 8(2)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365973

RESUMO

The lack of standardized structure names in radiotherapy (RT) data limits interoperability, data sharing, and the ability to perform big data analysis. To standardize radiotherapy structure names, we developed an integrated natural language processing (NLP) and machine learning (ML) based system that can map the physician-given structure names to American Association of Physicists in Medicine (AAPM) Task Group 263 (TG-263) standard names. The dataset consist of 794 prostate and 754 lung cancer patients across the 40 different radiation therapy centers managed by the Veterans Health Administration (VA). Additionally, data from the Radiation Oncology department at Virginia Commonwealth University (VCU) was collected to serve as a test set. Domain experts identified as anatomically significant nine prostate and ten lung organs-at-risk (OAR) structures and manually labeled them according to the TG-263 standards, and remaining structures were labeled as Non_OAR. We experimented with six different classification algorithms and three feature vector methods, and the final model was built with fastText algorithm. Multiple validation techniques are used to assess the robustness of the proposed methodology. The macro-averaged F 1 score was used as the main evaluation metric. The model achieved an F 1 score of 0.97 on prostate structures and 0.99 for lung structures from the VA dataset. The model also performed well on the test (VCU) dataset, achieving an F 1 score of 0.93 for prostate structures and 0.95 on lung structures. In this work, we demonstrate that NLP and ML based approaches can used to standardize the physician-given RT structure names with high fidelity. This standardization can help with big data analytics in the radiation therapy domain using population-derived datasets, including standardization of the treatment planning process, clinical decision support systems, treatment quality improvement programs, and hypothesis-driven clinical research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA