Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Org Lett ; 24(2): 731-735, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005969

RESUMO

Previously, we demonstrated that glycosyl tosylates are effective for the synthesis of ß-glycosides of gluco-configured 2-deoxy sugars. Here, we show the same sulfonate system can be used for the selective synthesis of α-glycosides containing the allo-configured 2-deoxy sugar digitoxose. As with previous work, optimal selectivity is obtained through matching the donor with the appropriate arylsulfonyl chloride promoter. The utility of this method is demonstrated through the synthesis of the α-linked digitoxose trisaccharide fragment of kijanimicin.

2.
Cancer Discov ; 11(8): 1913-1922, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33824136

RESUMO

Mutant-selective KRASG12C inhibitors, such as MRTX849 (adagrasib) and AMG 510 (sotorasib), have demonstrated efficacy in KRAS G12C-mutant cancers, including non-small cell lung cancer (NSCLC). However, mechanisms underlying clinical acquired resistance to KRASG12C inhibitors remain undetermined. To begin to define the mechanistic spectrum of acquired resistance, we describe a patient with KRAS G12C NSCLC who developed polyclonal acquired resistance to MRTX849 with the emergence of 10 heterogeneous resistance alterations in serial cell-free DNA spanning four genes (KRAS, NRAS, BRAF, MAP2K1), all of which converge to reactivate RAS-MAPK signaling. Notably, a novel KRAS Y96D mutation affecting the switch-II pocket, to which MRTX849 and other inactive-state inhibitors bind, was identified that interferes with key protein-drug interactions and confers resistance to these inhibitors in engineered and patient-derived KRAS G12C cancer models. Interestingly, a novel, functionally distinct tricomplex KRASG12C active-state inhibitor RM-018 retained the ability to bind and inhibit KRASG12C/Y96D and could overcome resistance. SIGNIFICANCE: In one of the first reports of clinical acquired resistance to KRASG12C inhibitors, our data suggest polyclonal RAS-MAPK reactivation as a central resistance mechanism. We also identify a novel KRAS switch-II pocket mutation that impairs binding and drives resistance to inactive-state inhibitors but is surmountable by a functionally distinct KRASG12C inhibitor.See related commentary by Pinnelli and Trusolino, p. 1874.This article is highlighted in the In This Issue feature, p. 1861.


Assuntos
Acetonitrilas/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA