Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 210(6): 807-819, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36705532

RESUMO

Thousands of long noncoding RNAs are encoded in mammalian genomes, yet most remain uncharacterized. In this study, we functionally characterized a mouse long noncoding RNA named U90926. Analysis of U90926 RNA levels revealed minimal expression across multiple tissues at steady state. However, the expression of this gene was highly induced in macrophages and dendritic cells by TLR activation, in a p38 MAPK- and MyD88-dependent manner. To study the function of U90926, we generated U90926-deficient (U9-KO) mice. Surprisingly, we found minimal effects of U90926 deficiency in cultured macrophages. Given the lack of macrophage-intrinsic effect, we investigated the subcellular localization of U90926 transcript and its protein-coding potential. We found that U90926 RNA localizes to the cytosol, associates with ribosomes, and contains an open reading frame that encodes a novel glycosylated protein (termed U9-ORF), which is secreted from the cell. An in vivo model of endotoxic shock revealed that, in comparison with wild type mice, U9-KO mice exhibited increased sickness responses and mortality. Mechanistically, serum levels of IL-6 were elevated in U9-KO mice, and IL-6 neutralization improved endotoxemia outcomes in U9-KO mice. Taken together, these results suggest that U90926 expression is protective during endotoxic shock, potentially mediated by the paracrine and/or endocrine actions of the novel U9-ORF protein secreted by activated myeloid cells.


Assuntos
RNA Longo não Codificante , Choque Séptico , Camundongos , Animais , RNA Longo não Codificante/genética , Interleucina-6 , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Choque Séptico/genética , Choque Séptico/metabolismo , Mamíferos/genética
2.
PLoS Pathog ; 14(4): e1007010, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29677220

RESUMO

HIV-1 replication normally requires Vif-mediated neutralization of APOBEC3 antiviral enzymes. Viruses lacking Vif succumb to deamination-dependent and -independent restriction processes. Here, HIV-1 adaptation studies were leveraged to ask whether viruses with an irreparable vif deletion could develop resistance to restrictive levels of APOBEC3G. Several resistant viruses were recovered with multiple amino acid substitutions in Env, and these changes alone are sufficient to protect Vif-null viruses from APOBEC3G-dependent restriction in T cell lines. Env adaptations cause decreased fusogenicity, which results in higher levels of Gag-Pol packaging. Increased concentrations of packaged Pol in turn enable faster virus DNA replication and protection from APOBEC3G-mediated hypermutation of viral replication intermediates. Taken together, these studies reveal that a moderate decrease in one essential viral activity, namely Env-mediated fusogenicity, enables the virus to change other activities, here, Gag-Pol packaging during particle production, and thereby escape restriction by the antiviral factor APOBEC3G. We propose a new paradigm in which alterations in viral homeostasis, through compensatory small changes, constitute a general mechanism used by HIV-1 and other viral pathogens to escape innate antiviral responses and other inhibitions including antiviral drugs.


Assuntos
Desaminase APOBEC-3G/genética , Adaptação Fisiológica , Infecções por HIV/virologia , HIV-1/patogenicidade , Mutação , Replicação Viral , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Desaminase APOBEC-3G/metabolismo , Substituição de Aminoácidos , Infecções por HIV/genética , Infecções por HIV/metabolismo , Homeostase , Interações Hospedeiro-Patógeno , Humanos , RNA Viral , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
3.
J Virol ; 89(6): 3247-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25568205

RESUMO

UNLABELLED: Tetraspanins constitute a family of cellular proteins that organize various membrane-based processes. Several members of this family, including CD81, are actively recruited by HIV-1 Gag to viral assembly and release sites. Despite their enrichment at viral exit sites, the overall levels of tetraspanins are decreased in HIV-1-infected cells. Here, we identify Vpu as the main viral determinant for tetraspanin downregulation. We also show that reduction of CD81 levels by Vpu is not a by-product of CD4 or BST-2/tetherin elimination from the surfaces of infected cells and likely occurs through an interaction between Vpu and CD81. Finally, we document that Vpu-mediated downregulation of CD81 from the surfaces of infected T cells can contribute to preserving the infectiousness of viral particles, thus revealing a novel Vpu function that promotes virus propagation by modulating the host cell environment. IMPORTANCE: The HIV-1 accessory protein Vpu has previously been shown to downregulate various host cell factors, thus helping the virus to overcome restriction barriers, evade immune attack, and maintain the infectivity of viral particles. Our study identifies tetraspanins as an additional group of host factors whose expression at the surfaces of infected cells is lowered by Vpu. While the downregulation of these integral membrane proteins, including CD81 and CD82, likely affects more than one function of HIV-1-infected cells, we document that Vpu-mediated lowering of CD81 levels in viral particles can be critical to maintaining their infectiousness.


Assuntos
Regulação para Baixo , Infecções por HIV/genética , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Tetraspanina 28/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Ligação Proteica , Tetraspanina 28/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética
4.
J Virol ; 88(13): 7645-58, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24760896

RESUMO

UNLABELLED: During cell-to-cell transmission of HIV-1, viral and cellular proteins transiently accumulate at the contact zone between infected (producer) and uninfected (target) cells, forming the virological synapse. Rearrangements of the cytoskeleton in producer and target cells are required for proper targeting of viral and cellular components during synapse formation, yet little is known about how these processes are regulated, particularly within the producer cell. Since ezrin-radixin-moesin (ERM) proteins connect F-actin with integral and peripheral membrane proteins, are incorporated into virions, and interact with cellular components of the virological presynapse, we hypothesized that they play roles during the late stage of HIV-1 replication. Here we document that phosphorylated (i.e., active) ezrin specifically accumulates at the HIV-1 presynapse in T cell lines and primary CD4(+) lymphocytes. To investigate whether ezrin supports virus transmission, we sought to ablate ezrin expression in producer cells. While cells did not tolerate a complete knockdown of ezrin, even a modest reduction of ezrin expression (~50%) in HIV-1-producing cells led to the release of particles with impaired infectivity. Further, when cocultured with uninfected target cells, ezrin-knockdown producer cells displayed reduced accumulation of the tetraspanin CD81 at the synapse and fused more readily with target cells, thus forming syncytia. Such an outcome likely is not optimal for virus dissemination, as evidenced by the fact that, in vivo, only relatively few infected cells form syncytia. Thus, ezrin likely helps secure efficient virus spread not only by enhancing virion infectivity but also by preventing excessive membrane fusion at the virological synapse. IMPORTANCE: While viruses, in principal, can propagate through successions of syncytia, HIV-1-infected cells in the majority of cases do not fuse with potential target cells during viral transmission. This mode of spread is coresponsible for key features of HIV-1 pathogenesis, including killing of bystander cells and establishment of latently infected T lymphocytes. Here we identify the ERM protein family member ezrin as a cellular factor that contributes to the inhibition of cell-cell fusion and thus to suppressing excessive syncytium formation. Our analyses further suggest that ezrin, which connects integral membrane proteins with actin, functions in concert with CD81, a member of the tetraspanin family of proteins. Additional evidence, documented here and elsewhere, suggests that ezrin and CD81 cooperate to prevent cytoskeleton rearrangements that need to take place during the fusion of cellular membranes.


Assuntos
Comunicação Celular , Proteínas do Citoesqueleto/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Internalização do Vírus , Western Blotting , Fusão Celular , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Citoesqueleto/metabolismo , Citometria de Fluxo , Células HEK293 , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Células HeLa , Humanos , Fosforilação , RNA Interferente Pequeno/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia
5.
Res Sq ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711888

RESUMO

Migrate3D is a cell migration analysis tool whose purpose is to computationally process positional cell tracking data generated via other image acquisition/analysis software and generate biologically meaningful results. The functionalities of Migrate3D include step-based calculations of each cell track, single-cell-level summary statistics, mean squared displacement analysis, and machine learning-based evaluation of the entire dataset and subpopulations of cells found within it. The parameters calculated within Migrate3D have been previously developed and validated by other groups, and were selected to facilitate extraction of the maximum depth of information possible from input datasets. Variables are user-adjustable to enable customized analyses of diverse motility patterns and cell types, both in three-and two-dimensional timelapse data. Independent of any particular upstream image analysis or cell tracking software, Migrate3D only needs positional data over time to execute the suite of calculations. This presents a unique opportunity to standardize and streamline cell migration analysis.

6.
Viruses ; 11(12)2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757023

RESUMO

Cell-to-cell transfer of virus particles at the Env-dependent virological synapse (VS) is a highly efficient mode of HIV-1 transmission. While cell-cell fusion could be triggered at the VS, leading to the formation of syncytia and preventing exponential growth of the infected cell population, this is strongly inhibited by both viral (Gag) and host (ezrin and tetraspanins) proteins. Here, we identify EWI-2, a protein that was previously shown to associate with ezrin and tetraspanins, as a host factor that contributes to the inhibition of Env-mediated cell-cell fusion. Using quantitative fluorescence microscopy, shRNA knockdowns, and cell-cell fusion assays, we show that EWI-2 accumulates at the presynaptic terminal (i.e., the producer cell side of the VS), where it contributes to the fusion-preventing activities of the other viral and cellular components. We also find that EWI-2, like tetraspanins, is downregulated upon HIV-1 infection, most likely by Vpu. Despite the strong inhibition of fusion at the VS, T cell-based syncytia do form in vivo and in physiologically relevant culture systems, but they remain small. In regard to that, we demonstrate that EWI-2 and CD81 levels are restored on the surface of syncytia, where they (presumably) continue to act as fusion inhibitors. This study documents a new role for EWI-2 as an inhibitor of HIV-1-induced cell-cell fusion and provides novel insight into how syncytia are prevented from fusing indefinitely.


Assuntos
Antígenos CD/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Proteínas de Membrana/metabolismo , Vírion/fisiologia , Antígenos CD/genética , Fusão Celular , Linhagem Celular , Regulação para Baixo , Células Gigantes/fisiologia , Células Gigantes/virologia , HIV-1/genética , Humanos , Proteínas de Membrana/genética , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/virologia , RNA Interferente Pequeno/genética , Linfócitos T/virologia
8.
Viruses ; 7(12): 6590-603, 2015 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-26703714

RESUMO

HIV-1 Env mediates fusion of viral and target cell membranes, but it can also mediate fusion of infected (producer) and target cells, thus triggering the formation of multinucleated cells, so-called syncytia. Large, round, immobile syncytia are readily observable in cultures of HIV-1-infected T cells, but these fast growing "fusion sinks" are largely regarded as cell culture artifacts. In contrast, small HIV-1-induced syncytia were seen in the paracortex of peripheral lymph nodes and other secondary lymphoid tissue of HIV-1-positive individuals. Further, recent intravital imaging of lymph nodes in humanized mice early after their infection with HIV-1 demonstrated that a significant fraction of infected cells were highly mobile, small syncytia, suggesting that these entities contribute to virus dissemination. Here, we report that the formation of small, migratory syncytia, for which we provide further quantification in humanized mice, can be recapitulated in vitro if HIV-1-infected T cells are placed into 3D extracellular matrix (ECM) hydrogels rather than being kept in traditional suspension culture systems. Intriguingly, live-cell imaging in hydrogels revealed that these syncytia, similar to individual infected cells, can transiently interact with uninfected cells, leading to rapid virus transfer without cell-cell fusion. Infected cells were also observed to deposit large amounts of viral particles into the extracellular space. Altogether, these observations suggest the need to further evaluate the biological significance of small, T cell-based syncytia and to consider the possibility that these entities do indeed contribute to virus spread and pathogenesis.


Assuntos
Células Gigantes/virologia , HIV-1/fisiologia , Linfócitos T/virologia , Internalização do Vírus , Animais , Técnicas de Cultura de Células , Células Cultivadas , HIV-1/isolamento & purificação , Humanos , Hidrogéis , Camundongos , Camundongos SCID , Vírion/isolamento & purificação
9.
Viruses ; 6(3): 1078-90, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24608085

RESUMO

Human immunodeficiency virus type 1 (HIV-1) transmission takes place primarily through cell-cell contacts known as virological synapses. Formation of these transient adhesions between infected and uninfected cells can lead to transmission of viral particles followed by separation of the cells. Alternatively, the cells can fuse, thus forming a syncytium. Tetraspanins, small scaffolding proteins that are enriched in HIV-1 virions and actively recruited to viral assembly sites, have been found to negatively regulate HIV-1 Env-induced cell-cell fusion. How these transmembrane proteins inhibit membrane fusion, however, is currently not known. As a first step towards elucidating the mechanism of fusion repression by tetraspanins, e.g., CD9 and CD63, we sought to identify the stage of the fusion process during which they operate. Using a chemical epistasis approach, four fusion inhibitors were employed in tandem with CD9 overexpression. Cells overexpressing CD9 were found to be sensitized to inhibitors targeting the pre-hairpin and hemifusion intermediates, while they were desensitized to an inhibitor of the pore expansion stage. Together with the results of a microscopy-based dye transfer assay, which revealed CD9- and CD63-induced hemifusion arrest, our investigations strongly suggest that tetraspanins block HIV-1-induced cell-cell fusion at the transition from hemifusion to pore opening.


Assuntos
Fusão Celular , HIV-1/fisiologia , Fusão de Membrana , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo , Tetraspaninas/metabolismo , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA