Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 46(3): 707-719, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29802217

RESUMO

In humans and mice, the first line of innate defense against inhaled pathogens and particles in the respiratory tract is airway mucus. The primary solid components of the mucus layer are the mucins MUC5AC and MUC5B, polymeric glycoproteins whose changes in abundance and structure can dramatically affect airway defense. Accordingly, MUC5AC/Muc5ac and MUC5B/Muc5b are tightly regulated at a transcriptional level by tissue-specific transcription factors in homeostasis and in response to injurious and inflammatory triggers. In addition to modulated levels of mucin gene transcription, translational and post-translational biosynthetic processes also exert significant influence upon mucin function. Mucins are massive macromolecules with numerous functional domains that contribute to their structural composition and biophysical properties. Single MUC5AC and MUC5B apoproteins have molecular masses of >400 kDa, and von Willebrand factor D-like as well as other cysteine-rich domain segments contribute to mucin polymerization and flexibility, thus increasing apoprotein length and complexity. Additional domains serve as sites for O-glycosylation, which increase further mucin mass several-fold. Glycosylation is a defining process for mucins that is specific with respect to additions of glycans to mucin apoprotein backbones, and glycan additions influence the physical properties of the mucins via structural modifications as well as charge interactions. Ultimately, through their tight regulation and complex assembly, airway mucins follow the biological rule of 'form fits function' in that their structural organization influences their role in lung homeostatic mechanisms.


Assuntos
Homeostase , Pulmão/fisiologia , Mucinas/fisiologia , Animais , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Mucinas/biossíntese , Mucinas/genética , Mucinas/metabolismo , Transcrição Gênica
2.
PLoS One ; 8(7): e68385, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844193

RESUMO

It is widely accepted that long-term changes in synapse structure and function are mediated by rapid activity-dependent gene transcription and new protein synthesis. A growing amount of evidence suggests that the microRNA (miRNA) pathway plays an important role in coordinating these processes. Despite recent advances in this field, there remains a critical need to identify specific activity-regulated miRNAs as well as their key messenger RNA (mRNA) targets. To address these questions, we used the larval Drosophila melanogaster neuromuscular junction (NMJ) as a model synapse in which to identify novel miRNA-mediated mechanisms that control activity-dependent synaptic growth. First, we developed a screen to identify miRNAs differentially regulated in the larval CNS following spaced synaptic stimulation. Surprisingly, we identified five miRNAs (miRs-1, -8, -289, -314, and -958) that were significantly downregulated by activity. Neuronal misexpression of three miRNAs (miRs-8, -289, and -958) suppressed activity-dependent synaptic growth suggesting that these miRNAs control the translation of biologically relevant target mRNAs. Functional annotation cluster analysis revealed that putative targets of miRs-8 and -289 are significantly enriched in clusters involved in the control of neuronal processes including axon development, pathfinding, and growth. In support of this, miR-8 regulated the expression of a wingless 3'UTR (wg 3' untranslated region) reporter in vitro. Wg is an important presynaptic regulatory protein required for activity-dependent axon terminal growth at the fly NMJ. In conclusion, our results are consistent with a model where key activity-regulated miRNAs are required to coordinate the expression of genes involved in activity-dependent synaptogenesis.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Junção Neuromuscular/genética , Sinapses/genética , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Perfilação da Expressão Gênica , Ontologia Genética , Larva/genética , Larva/metabolismo , Larva/fisiologia , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Sinapses/metabolismo , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA