Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 72(4): 767-780, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-36946562

RESUMO

Accurate phylogenies are fundamental to our understanding of the pattern and process of evolution. Yet, phylogenies at deep evolutionary timescales, with correspondingly long branches, have been fraught with controversy resulting from conflicting estimates from models with varying complexity and goodness of fit. Analyses of historical as well as current empirical datasets, such as alignments including Microsporidia, Nematoda, or Platyhelminthes, have demonstrated that inadequate modeling of across-site compositional heterogeneity, which is the result of biochemical constraints that lead to varying patterns of accepted amino acids along sequences, can lead to erroneous topologies that are strongly supported. Unfortunately, models that adequately account for across-site compositional heterogeneity remain computationally challenging or intractable for an increasing fraction of contemporary datasets. Here, we introduce "compositional constraint analysis," a method to investigate the effect of site-specific constraints on amino acid composition on phylogenetic inference. We show that more constrained sites with lower diversity and less constrained sites with higher diversity exhibit ostensibly conflicting signals under models ignoring across-site compositional heterogeneity that lead to long-branch attraction artifacts and demonstrate that more complex models accounting for across-site compositional heterogeneity can ameliorate this bias. We present CAT-posterior mean site frequencies (PMSF), a pipeline for diagnosing and resolving phylogenetic bias resulting from inadequate modeling of across-site compositional heterogeneity based on the CAT model. CAT-PMSF is robust against long-branch attraction in all alignments we have examined. We suggest using CAT-PMSF when convergence of the CAT model cannot be assured. We find evidence that compositionally constrained sites are driving long-branch attraction in two metazoan datasets and recover evidence for Porifera as the sister group to all other animals. [Animal phylogeny; cross-site heterogeneity; long-branch attraction; phylogenomics.].


Assuntos
Microsporídios , Animais , Filogenia , Viés , Modelos Genéticos
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39001714

RESUMO

In recent years, phylogenetic reconciliation has emerged as a promising approach for studying microbial ecology and evolution. The core idea is to model how gene trees evolve along a species tree and to explain differences between them via evolutionary events including gene duplications, transfers, and losses. Here, we describe how phylogenetic reconciliation provides a natural framework for studying genome evolution and highlight recent applications including ancestral gene content inference, the rooting of species trees, and the insights into metabolic evolution and ecological transitions they yield. Reconciliation analyses have elucidated the evolution of diverse microbial lineages, from Chlamydiae to Asgard archaea, shedding light on ecological adaptation, host-microbe interactions, and symbiotic relationships. However, there are many opportunities for broader application of the approach in microbiology. Continuing improvements to make reconciliation models more realistic and scalable, and integration of ecological metadata such as habitat, pH, temperature, and oxygen use offer enormous potential for understanding the rich tapestry of microbial life.


Assuntos
Archaea , Filogenia , Archaea/genética , Archaea/classificação , Bactérias/genética , Bactérias/classificação , Evolução Molecular , Genoma Bacteriano , Simbiose , Ecologia
3.
Nat Ecol Evol ; 8(9): 1654-1666, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38997462

RESUMO

The nature of the last universal common ancestor (LUCA), its age and its impact on the Earth system have been the subject of vigorous debate across diverse disciplines, often based on disparate data and methods. Age estimates for LUCA are usually based on the fossil record, varying with every reinterpretation. The nature of LUCA's metabolism has proven equally contentious, with some attributing all core metabolisms to LUCA, whereas others reconstruct a simpler life form dependent on geochemistry. Here we infer that LUCA lived ~4.2 Ga (4.09-4.33 Ga) through divergence time analysis of pre-LUCA gene duplicates, calibrated using microbial fossils and isotope records under a new cross-bracing implementation. Phylogenetic reconciliation suggests that LUCA had a genome of at least 2.5 Mb (2.49-2.99 Mb), encoding around 2,600 proteins, comparable to modern prokaryotes. Our results suggest LUCA was a prokaryote-grade anaerobic acetogen that possessed an early immune system. Although LUCA is sometimes perceived as living in isolation, we infer LUCA to have been part of an established ecological system. The metabolism of LUCA would have provided a niche for other microbial community members and hydrogen recycling by atmospheric photochemistry could have supported a modestly productive early ecosystem.


Assuntos
Archaea , Bactérias , Planeta Terra , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Archaea/genética , Archaea/classificação , Filogenia , Fósseis , Evolução Biológica
4.
Genome Biol Evol ; 15(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37463417

RESUMO

ALE and GeneRax are tools for probabilistic gene tree-species tree reconciliation. Based on a common underlying statistical model of how gene trees evolve along species trees, these methods rely on gene vs. species tree discordance to infer gene duplication, transfer, and loss events, map gene family origins, and root species trees. Published analyses have used these methods to root species trees of Archaea, Bacteria, and several eukaryotic groups, as well as to infer ancestral gene repertoires. However, it was recently suggested that reconciliation-based estimates of duplication and transfer events using the ALE/GeneRax model were unreliable, with potential implications for species tree rooting. Here, we assess these criticisms and find that the methods are accurate when applied to simulated data and in generally good agreement with alternative methodological approaches on empirical data. In particular, ALE recovers variation in gene duplication and transfer frequencies across lineages that is consistent with the known biology of studied clades. In plants and opisthokonts, ALE recovers the consensus species tree root; in Bacteria-where there is less certainty about the root position-ALE agrees with alternative approaches on the most likely root region. Overall, ALE and related approaches are promising tools for studying genome evolution.


Assuntos
Algoritmos , Evolução Molecular , Filogenia , Duplicação Gênica , Bactérias/genética , Eucariotos , Modelos Genéticos
5.
Nat Commun ; 14(1): 7456, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978174

RESUMO

The timing of early cellular evolution, from the divergence of Archaea and Bacteria to the origin of eukaryotes, is poorly constrained. The ATP synthase complex is thought to have originated prior to the Last Universal Common Ancestor (LUCA) and analyses of ATP synthase genes, together with ribosomes, have played a key role in inferring and rooting the tree of life. We reconstruct the evolutionary history of ATP synthases using an expanded taxon sampling set and develop a phylogenetic cross-bracing approach, constraining equivalent speciation nodes to be contemporaneous, based on the phylogenetic imprint of endosymbioses and ancient gene duplications. This approach results in a highly resolved, dated species tree and establishes an absolute timeline for ATP synthase evolution. Our analyses show that the divergence of ATP synthase into F- and A/V-type lineages was a very early event in cellular evolution dating back to more than 4 Ga, potentially predating the diversification of Archaea and Bacteria. Our cross-braced, dated tree of life also provides insight into more recent evolutionary transitions including eukaryogenesis, showing that the eukaryotic nuclear and mitochondrial lineages diverged from their closest archaeal (2.67-2.19 Ga) and bacterial (2.58-2.12 Ga) relatives at approximately the same time, with a slightly longer nuclear stem-lineage.


Assuntos
Archaea , Bactérias , Filogenia , Bactérias/genética , Archaea/genética , Mitocôndrias/genética , Trifosfato de Adenosina , Evolução Molecular , Eucariotos/genética , Evolução Biológica
6.
Science ; 372(6542)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958449

RESUMO

A rooted bacterial tree is necessary to understand early evolution, but the position of the root is contested. Here, we model the evolution of 11,272 gene families to identify the root, extent of horizontal gene transfer (HGT), and the nature of the last bacterial common ancestor (LBCA). Our analyses root the tree between the major clades Terrabacteria and Gracilicutes and suggest that LBCA was a free-living flagellated, rod-shaped double-membraned organism. Contrary to recent proposals, our analyses reject a basal placement of the Candidate Phyla Radiation, which instead branches sister to Chloroflexota within Terrabacteria. While most gene families (92%) have evidence of HGT, overall, two-thirds of gene transmissions have been vertical, suggesting that a rooted tree provides a meaningful frame of reference for interpreting bacterial evolution.


Assuntos
Bactérias/classificação , Bactérias/genética , Evolução Molecular , Filogenia , Archaea/classificação , Archaea/genética , Transferência Genética Horizontal , Genoma Bacteriano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA