Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 203: 584-593, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35085741

RESUMO

After more than one and a half year since the COVID-19 pandemics outbreak the scientific world is constantly trying to understand its dynamics. In this paper of the case fatality rates (CFR) for COVID-19 we study the historic data regarding mortality in Poland during the first six months of pandemic, when no SARS-CoV-2 variants of concern were present among infected. To this end, we apply competing risk models to perform both uni- and multivariate analyses on specific subpopulations selected by different factors including the key indicators: age, sex, hospitalization. The study explores the case fatality rate to find out its decreasing trend in time. Furthermore, we describe the differences in mortality among hospitalized and other cases indicating a sudden increase of mortality among hospitalized cases at the end of the 2020 spring season. Exploratory and multivariate analysis revealed the real impact of each variable and besides the expected factors indicating increased mortality (age, comorbidities) we track more non-obvious indicators. Recent medical care as well as the identification of the source contact, independently of the comorbidities, significantly impact an individual mortality risk. As a result, the study provides a twofold insight into the COVID-19 mortality in Poland. On one hand we explore mortality in different groups with respect to different variables, on the other we indicate novel factors that may be crucial in reducing mortality. The later can be coped, e.g. by more efficient contact tracing and proper organization and management of the health care system to accompany those who need medical care independently of comorbidities or COVID-19 infection.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Busca de Comunicante , Humanos , Pandemias , Polônia/epidemiologia
2.
BMC Cancer ; 22(1): 1001, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131239

RESUMO

BACKGROUND: Despite the fact that tumor microenvironment (TME) and gene mutations are the main determinants of progression of the deadliest cancer in the world - lung cancer, their interrelations are not well understood. Digital pathology data provides a unique insight into the spatial composition of the TME. Various spatial metrics and machine learning approaches were proposed for prediction of either patient survival or gene mutations from this data. Still, these approaches are limited in the scope of analyzed features and in their explainability, and as such fail to transfer to clinical practice. METHODS: Here, we generated 23,199 image patches from 26 hematoxylin-and-eosin (H&E)-stained lung cancer tissue sections and annotated them into 9 different tissue classes. Using this dataset, we trained a deep neural network ARA-CNN. Next, we applied the trained network to segment 467 lung cancer H&E images from The Cancer Genome Atlas (TCGA) database. We used the segmented images to compute human-interpretable features reflecting the heterogeneous composition of the TME, and successfully utilized them to predict patient survival and cancer gene mutations. RESULTS: We achieved per-class AUC ranging from 0.72 to 0.99 for classifying tissue types in lung cancer with ARA-CNN. Machine learning models trained on the proposed human-interpretable features achieved a c-index of 0.723 in the task of survival prediction and AUC up to 73.5% for PDGFRB in the task of mutation classification. CONCLUSIONS: We presented a framework that accurately predicted survival and gene mutations in lung adenocarcinoma patients based on human-interpretable features extracted from H&E slides. Our approach can provide important insights for designing novel cancer treatments, by linking the spatial structure of the TME in lung adenocarcinoma to gene mutations and patient survival. It can also expand our understanding of the effects that the TME has on tumor evolutionary processes. Our approach can be generalized to different cancer types to inform precision medicine strategies.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Amarelo de Eosina-(YS) , Hematoxilina , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Microambiente Tumoral/genética
3.
PLoS Comput Biol ; 16(10): e1008056, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33006977

RESUMO

Metastases are the main reason for cancer-related deaths. Initiation of metastases, where newly seeded tumor cells expand into colonies, presents a tremendous bottleneck to metastasis formation. Despite its importance, a quantitative description of metastasis initiation and its clinical implications is lacking. Here, we set theoretical grounds for the metastatic bottleneck with a simple stochastic model. The model assumes that the proliferation-to-death rate ratio for the initiating metastatic cells increases when they are surrounded by more of their kind. For a total of 159,191 patients across 13 cancer types, we found that a single cell has an extremely low median probability of successful seeding of the order of 10-8. With increasing colony size, a sharp transition from very unlikely to very likely successful metastasis initiation occurs. The median metastatic bottleneck, defined as the critical colony size that marks this transition, was between 10 and 21 cells. We derived the probability of metastasis occurrence and patient outcome based on primary tumor size at diagnosis and tumor type. The model predicts that the efficacy of patient treatment depends on the primary tumor size but even more so on the severity of the metastatic bottleneck, which is estimated to largely vary between patients. We find that medical interventions aiming at tightening the bottleneck, such as immunotherapy, can be much more efficient than therapies that decrease overall tumor burden, such as chemotherapy.


Assuntos
Modelos Biológicos , Metástase Neoplásica , Neoplasias , Animais , Antineoplásicos/uso terapêutico , Biologia Computacional , Humanos , Imunoterapia , Camundongos , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Metástase Neoplásica/terapia , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/terapia , Processos Estocásticos , Resultado do Tratamento , Carga Tumoral
4.
Bioinformatics ; 35(14): i605-i614, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31510678

RESUMO

MOTIVATION: Perturbation experiments constitute the central means to study cellular networks. Several confounding factors complicate computational modeling of signaling networks from this data. First, the technique of RNA interference (RNAi), designed and commonly used to knock-down specific genes, suffers from off-target effects. As a result, each experiment is a combinatorial perturbation of multiple genes. Second, the perturbations propagate along unknown connections in the signaling network. Once the signal is blocked by perturbation, proteins downstream of the targeted proteins also become inactivated. Finally, all perturbed network members, either directly targeted by the experiment, or by propagation in the network, contribute to the observed effect, either in a positive or negative manner. One of the key questions of computational inference of signaling networks from such data are, how many and what combinations of perturbations are required to uniquely and accurately infer the model? RESULTS: Here, we introduce an enhanced version of linear effects models (LEMs), which extends the original by accounting for both negative and positive contributions of the perturbed network proteins to the observed phenotype. We prove that the enhanced LEMs are identified from data measured under perturbations of all single, pairs and triplets of network proteins. For small networks of up to five nodes, only perturbations of single and pairs of proteins are required for identifiability. Extensive simulations demonstrate that enhanced LEMs achieve excellent accuracy of parameter estimation and network structure learning, outperforming the previous version on realistic data. LEMs applied to Bartonella henselae infection RNAi screening data identified known interactions between eight nodes of the infection network, confirming high specificity of our model and suggested one new interaction. AVAILABILITY AND IMPLEMENTATION: https://github.com/EwaSzczurek/LEM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA Interferente Pequeno/genética , Biologia Computacional , Modelos Lineares , Proteínas , Interferência de RNA
5.
PLoS Comput Biol ; 15(2): e1006887, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30811379

RESUMO

[This corrects the article DOI: 10.1371/journal.pcbi.1005626.].

6.
PLoS Comput Biol ; 13(7): e1005626, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28678836

RESUMO

Cancer aggressiveness and its effect on patient survival depends on mutations in the tumor genome. Epistatic interactions between the mutated genes may guide the choice of anticancer therapy and set predictive factors of its success. Inhibitors targeting synthetic lethal partners of genes mutated in tumors are already utilized for efficient and specific treatment in the clinic. The space of possible epistatic interactions, however, is overwhelming, and computational methods are needed to limit the experimental effort of validating the interactions for therapy and characterizing their biomarkers. Here, we introduce SurvLRT, a statistical likelihood ratio test for identifying epistatic gene pairs and triplets from cancer patient genomic and survival data. Compared to established approaches, SurvLRT performed favorable in predicting known, experimentally verified synthetic lethal partners of PARP1 from TCGA data. Our approach is the first to test for epistasis between triplets of genes to identify biomarkers of synthetic lethality-based therapy. SurvLRT proved successful in identifying the known gene TP53BP1 as the biomarker of success of the therapy targeting PARP in BRCA1 deficient tumors. Search for other biomarkers for the same interaction revealed a region whose deletion was a more significant biomarker than deletion of TP53BP1. With the ability to detect not only pairwise but twelve different types of triple epistasis, applicability of SurvLRT goes beyond cancer therapy, to the level of characterization of shapes of fitness landscapes.


Assuntos
Biomarcadores Tumorais/genética , Epistasia Genética/genética , Genoma Humano/genética , Neoplasias/genética , Neoplasias/mortalidade , Modelos de Riscos Proporcionais , Simulação por Computador , Aptidão Genética/genética , Marcadores Genéticos/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Humanos , Funções Verossimilhança , Modelos Estatísticos , Proteínas de Neoplasias/genética , Prevalência , Fatores de Risco , Análise de Sobrevida
11.
Bioinformatics ; 32(12): i297-i305, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307630

RESUMO

MOTIVATION: Perturbations constitute the central means to study signaling pathways. Interrupting components of the pathway and analyzing observed effects of those interruptions can give insight into unknown connections within the signaling pathway itself, as well as the link from the pathway to the effects. Different pathway components may have different individual contributions to the measured perturbation effects, such as gene expression changes. Those effects will be observed in combination when the pathway components are perturbed. Extant approaches focus either on the reconstruction of pathway structure or on resolving how the pathway components control the downstream effects. RESULTS: Here, we propose a linear effects model, which can be applied to solve both these problems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of learning the pathway structure as well as estimation of the individual contributions of pathway components to the perturbation effects. The practical utility of our approach is illustrated by an application to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces cerevisiaeAvailability and Implementation: lem is available as a R package at http://www.mimuw.edu.pl/∼szczurek/lem CONTACT: szczurek@mimuw.edu.pl; niko.beerenwinkel@bsse.ethz.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Transdução de Sinais , Modelos Lineares
12.
Bioinformatics ; 32(7): 968-75, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26163509

RESUMO

MOTIVATION: Despite recent technological advances in genomic sciences, our understanding of cancer progression and its driving genetic alterations remains incomplete. RESULTS: We introduce TiMEx, a generative probabilistic model for detecting patterns of various degrees of mutual exclusivity across genetic alterations, which can indicate pathways involved in cancer progression. TiMEx explicitly accounts for the temporal interplay between the waiting times to alterations and the observation time. In simulation studies, we show that our model outperforms previous methods for detecting mutual exclusivity. On large-scale biological datasets, TiMEx identifies gene groups with strong functional biological relevance, while also proposing new candidates for biological validation. TiMEx possesses several advantages over previous methods, including a novel generative probabilistic model of tumorigenesis, direct estimation of the probability of mutual exclusivity interaction, computational efficiency and high sensitivity in detecting gene groups involving low-frequency alterations. AVAILABILITY AND IMPLEMENTATION: TiMEx is available as a Bioconductor R package at www.bsse.ethz.ch/cbg/software/TiMEx CONTACT: niko.beerenwinkel@bsse.ethz.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Modelos Teóricos , Neoplasias/genética , Algoritmos , Humanos , Mutação , Software
13.
Genome Res ; 23(8): 1307-18, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23554463

RESUMO

The binding of transcription factors (TFs) to their specific motifs in genomic regulatory regions is commonly studied in isolation. However, in order to elucidate the mechanisms of transcriptional regulation, it is essential to determine which TFs bind DNA cooperatively as dimers and to infer the precise nature of these interactions. So far, only a small number of such dimeric complexes are known. Here, we present an algorithm for predicting cell-type-specific TF-TF dimerization on DNA on a large scale, using DNase I hypersensitivity data from 78 human cell lines. We represented the universe of possible TF complexes by their corresponding motif complexes, and analyzed their occurrence at cell-type-specific DNase I hypersensitive sites. Based on ∼1.4 billion tests for motif complex enrichment, we predicted 603 highly significant cell-type-specific TF dimers, the vast majority of which are novel. Our predictions included 76% (19/25) of the known dimeric complexes and showed significant overlap with an experimental database of protein-protein interactions. They were also independently supported by evolutionary conservation, as well as quantitative variation in DNase I digestion patterns. Notably, the known and predicted TF dimers were almost always highly compact and rigidly spaced, suggesting that TFs dimerize in close proximity to their partners, which results in strict constraints on the structure of the DNA-bound complex. Overall, our results indicate that chromatin openness profiles are highly predictive of cell-type-specific TF-TF interactions. Moreover, cooperative TF dimerization seems to be a widespread phenomenon, with multiple TF complexes predicted in most cell types.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/metabolismo , Modelos Biológicos , Algoritmos , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Análise por Conglomerados , Simulação por Computador , Sequência Consenso , Clivagem do DNA , Desoxirribonuclease I/química , Evolução Molecular , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Multimerização Proteica , Fatores de Transcrição/metabolismo
14.
Bioinformatics ; 30(17): 2456-63, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24812340

RESUMO

MOTIVATION: Cancer cell genomes acquire several genetic alterations during somatic evolution from a normal cell type. The relative order in which these mutations accumulate and contribute to cell fitness is affected by epistatic interactions. Inferring their evolutionary history is challenging because of the large number of mutations acquired by cancer cells as well as the presence of unknown epistatic interactions. RESULTS: We developed Bayesian Mutation Landscape (BML), a probabilistic approach for reconstructing ancestral genotypes from tumor samples for much larger sets of genes than previously feasible. BML infers the likely sequence of mutation accumulation for any set of genes that is recurrently mutated in tumor samples. When applied to tumor samples from colorectal, glioblastoma, lung and ovarian cancer patients, BML identifies the diverse evolutionary scenarios involved in tumor initiation and progression in greater detail, but broadly in agreement with prior results. AVAILABILITY AND IMPLEMENTATION: Source code and all datasets are freely available at bml.molgen.mpg.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Evolução Clonal , Neoplasias/genética , Algoritmos , Teorema de Bayes , Genes Neoplásicos , Genótipo , Humanos , Mutação
15.
PLoS Comput Biol ; 10(3): e1003503, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675718

RESUMO

In large collections of tumor samples, it has been observed that sets of genes that are commonly involved in the same cancer pathways tend not to occur mutated together in the same patient. Such gene sets form mutually exclusive patterns of gene alterations in cancer genomic data. Computational approaches that detect mutually exclusive gene sets, rank and test candidate alteration patterns by rewarding the number of samples the pattern covers and by punishing its impurity, i.e., additional alterations that violate strict mutual exclusivity. However, the extant approaches do not account for possible observation errors. In practice, false negatives and especially false positives can severely bias evaluation and ranking of alteration patterns. To address these limitations, we develop a fully probabilistic, generative model of mutual exclusivity, explicitly taking coverage, impurity, as well as error rates into account, and devise efficient algorithms for parameter estimation and pattern ranking. Based on this model, we derive a statistical test of mutual exclusivity by comparing its likelihood to the null model that assumes independent gene alterations. Using extensive simulations, the new test is shown to be more powerful than a permutation test applied previously. When applied to detect mutual exclusivity patterns in glioblastoma and in pan-cancer data from twelve tumor types, we identify several significant patterns that are biologically relevant, most of which would not be detected by previous approaches. Our statistical modeling framework of mutual exclusivity provides increased flexibility and power to detect cancer pathways from genomic alteration data in the presence of noise. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5.


Assuntos
Neoplasias Encefálicas/genética , Mutação , Algoritmos , Biologia Computacional , Simulação por Computador , Bases de Dados Genéticas , Reações Falso-Positivas , Genoma Humano , Genômica , Glioblastoma/genética , Humanos , Modelos Estatísticos , Probabilidade
16.
BMC Genomics ; 15: 1162, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25534632

RESUMO

BACKGROUND: Large-scale RNAi screening has become an important technology for identifying genes involved in biological processes of interest. However, the quality of large-scale RNAi screening is often deteriorated by off-targets effects. In order to find statistically significant effector genes for pathogen entry, we systematically analyzed entry pathways in human host cells for eight pathogens using image-based kinome-wide siRNA screens with siRNAs from three vendors. We propose a Parallel Mixed Model (PMM) approach that simultaneously analyzes several non-identical screens performed with the same RNAi libraries. RESULTS: We show that PMM gains statistical power for hit detection due to parallel screening. PMM allows incorporating siRNA weights that can be assigned according to available information on RNAi quality. Moreover, PMM is able to estimate a sharedness score that can be used to focus follow-up efforts on generic or specific gene regulators. By fitting a PMM model to our data, we found several novel hit genes for most of the pathogens studied. CONCLUSIONS: Our results show parallel RNAi screening can improve the results of individual screens. This is currently particularly interesting when large-scale parallel datasets are becoming more and more publicly available. Our comprehensive siRNA dataset provides a public, freely available resource for further statistical and biological analyses in the high-content, high-throughput siRNA screening field.


Assuntos
Genômica/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Linhagem Celular , Biblioteca Gênica , Genômica/normas , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/genética , Humanos , Curva ROC , Reprodutibilidade dos Testes
17.
Int J Cancer ; 133(9): 2123-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23629686

RESUMO

Synthetic lethal interactions in cancer hold the potential for successful combined therapies, which would avoid the difficulties of single molecule-targeted treatment. Identification of interactions that are specific for human tumors is an open problem in cancer research. This work aims at deciphering synthetic sick or lethal interactions directly from somatic alteration, expression and survival data of cancer patients. To this end, we look for pairs of genes and their alterations or expression levels that are "avoided" by tumors and "beneficial" for patients. Thus, candidates for synthetic sickness or lethality (SSL) interaction are identified as such gene pairs whose combination of states is under-represented in the data. Our main methodological contribution is a quantitative score that allows ranking of the candidate SSL interactions according to evidence found in patient survival. Applying this analysis to glioblastoma data, we collect 1,956 synthetic sick or lethal partners for 85 abundantly altered genes, most of which show extensive copy number variation across the patient cohort. We rediscover and interpret known interaction between TP53 and PLK1, as well as provide insight into the mechanism behind EGFR interacting with AKT2, but not AKT1 nor AKT3. Cox model analysis determines 274 of identified interactions as having significant impact on overall survival in glioblastoma, which is more informative than a standard survival predictor based on patient's age.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA/genética , Genes Letais , Glioblastoma/genética , Glioblastoma/mortalidade , Modelos Genéticos , Mutação Puntual/genética , Biomarcadores Tumorais/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Humanos , Prognóstico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Taxa de Sobrevida , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Quinase 1 Polo-Like
18.
Curr Opin Struct Biol ; 83: 102733, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992451

RESUMO

Antimicrobial peptides (AMPs) emerge as promising agents against antimicrobial resistance, providing an alternative to conventional antibiotics. Artificial intelligence (AI) revolutionized AMP discovery through both discrimination and generation approaches. The discriminators aid in the identification of promising candidates by predicting key peptide properties such as activity and toxicity, while the generators learn the distribution of peptides and enable sampling novel AMP candidates, either de novo or as analogs of a prototype peptide. Moreover, the controlled generation of AMPs with desired properties is achieved by discriminator-guided filtering, positive-only learning, latent space sampling, as well as conditional and optimized generation. Here we review recent achievements in AI-driven AMP discovery, highlighting the most exciting directions.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Inteligência Artificial , Antibacterianos/farmacologia , Antibacterianos/química
19.
Nat Commun ; 14(1): 1453, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922490

RESUMO

Antimicrobial peptides emerge as compounds that can alleviate the global health hazard of antimicrobial resistance, prompting a need for novel computational approaches to peptide generation. Here, we propose HydrAMP, a conditional variational autoencoder that learns lower-dimensional, continuous representation of peptides and captures their antimicrobial properties. The model disentangles the learnt representation of a peptide from its antimicrobial conditions and leverages parameter-controlled creativity. HydrAMP is the first model that is directly optimized for diverse tasks, including unconstrained and analogue generation and outperforms other approaches in these tasks. An additional preselection procedure based on ranking of generated peptides and molecular dynamics simulations increases experimental validation rate. Wet-lab experiments on five bacterial strains confirm high activity of nine peptides generated as analogues of clinically relevant prototypes, as well as six analogues of an inactive peptide. HydrAMP enables generation of diverse and potent peptides, making a step towards resolving the antimicrobial resistance crisis.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Bactérias
20.
Sci Rep ; 13(1): 7049, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120674

RESUMO

Discovering synthetic lethal (SL) gene partners of cancer genes is an important step in developing cancer therapies. However, identification of SL interactions is challenging, due to a large number of possible gene pairs, inherent noise and confounding factors in the observed signal. To discover robust SL interactions, we devised SLIDE-VIP, a novel framework combining eight statistical tests, including a new patient data-based test iSurvLRT. SLIDE-VIP leverages multi-omics data from four different sources: gene inactivation cell line screens, cancer patient data, drug screens and gene pathways. We applied SLIDE-VIP to discover SL interactions between genes involved in DNA damage repair, chromatin remodeling and cell cycle, and their potentially druggable partners. The top 883 ranking SL candidates had strong evidence in cell line and patient data, 250-fold reducing the initial space of 200K pairs. Drug screen and pathway tests provided additional corroboration and insights into these interactions. We rediscovered well-known SL pairs such as RB1 and E2F3 or PRKDC and ATM, and in addition, proposed strong novel SL candidates such as PTEN and PIK3CB. In summary, SLIDE-VIP opens the door to the discovery of SL interactions with clinical potential. All analysis and visualizations are available via the online SLIDE-VIP WebApp.


Assuntos
Neoplasias , Mutações Sintéticas Letais , Humanos , Multiômica , Montagem e Desmontagem da Cromatina , Neoplasias/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Dano ao DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA