Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612407

RESUMO

A small fraction of people vaccinated with mRNA-lipid nanoparticle (mRNA-LNP)-based COVID-19 vaccines display acute or subacute inflammatory symptoms whose mechanism has not been clarified to date. To better understand the molecular mechanism of these adverse events (AEs), here, we analyzed in vitro the vaccine-induced induction and interrelations of the following two major inflammatory processes: complement (C) activation and release of proinflammatory cytokines. Incubation of Pfizer-BioNTech's Comirnaty and Moderna's Spikevax with 75% human serum led to significant increases in C5a, sC5b-9, and Bb but not C4d, indicating C activation mainly via the alternative pathway. Control PEGylated liposomes (Doxebo) also induced C activation, but, on a weight basis, it was ~5 times less effective than that of Comirnaty. Viral or synthetic naked mRNAs had no C-activating effects. In peripheral blood mononuclear cell (PBMC) cultures supplemented with 20% autologous serum, besides C activation, Comirnaty induced the secretion of proinflammatory cytokines in the following order: IL-1α < IFN-γ < IL-1ß < TNF-α < IL-6 < IL-8. Heat-inactivation of C in serum prevented a rise in IL-1α, IL-1ß, and TNF-α, suggesting C-dependence of these cytokines' induction, although the C5 blocker Soliris and C1 inhibitor Berinert, which effectively inhibited C activation in both systems, did not suppress the release of any cytokines. These findings suggest that the inflammatory AEs of mRNA-LNP vaccines are due, at least in part, to stimulation of both arms of the innate immune system, whereupon C activation may be causally involved in the induction of some, but not all, inflammatory cytokines. Thus, the pharmacological attenuation of inflammatory AEs may not be achieved via monotherapy with the tested C inhibitors; efficacy may require combination therapy with different C inhibitors and/or other anti-inflammatory agents.


Assuntos
COVID-19 , Inativadores do Complemento , Nanopartículas , Humanos , Lipossomos , Vacinas contra COVID-19/efeitos adversos , Leucócitos Mononucleares , Citocinas , Fator de Necrose Tumoral alfa , Vacina BNT162 , Ativação do Complemento , Lipídeos
2.
Methods Mol Biol ; 2789: 229-243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507008

RESUMO

A small fraction, up to 10%, of people treated intravenously with state-of-the-art nanoparticulate drugs or diagnostic agents develop an acute infusion reaction which can be severe or even lethal. Activation of the complement (C) system can play a causal, or contributing role in these atypical, "pseudoallergic" reactions, hence their name, C activation-related pseudoallergy (CARPA). Intravenous (i.v.) administration of the human reaction-triggering (very small) dose of a test sample in pigs triggers a symptom tetrad (characteristic hemodynamic, hematological, skin, and laboratory changes) that correspond to the major human symptoms. Quantitating these changes provides a highly sensitive and reproducible method for assessing the risk of CARPA, enabling the implementation of appropriate preventive measures. Accordingly, the porcine CARPA model has been increasingly used for the safety evaluation of therapeutic and diagnostic nanomedicines and, recently, mRNA-lipid nanoparticle vaccines. This chapter provides details of the experimental procedure followed upon using the model.


Assuntos
Anafilaxia , Hipersensibilidade a Drogas , Nanopartículas , Vacinas , Suínos , Humanos , Animais , Ativação do Complemento , Nanopartículas/efeitos adversos , Anafilaxia/etiologia
3.
Vaccine X ; 19: 100497, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38933697

RESUMO

Background: Comirnaty, Pfizer-BioNTech's polyethylene-glycol (PEG)-containing Covid-19 vaccine, can cause hypersensitivity reactions (HSRs), or rarely, life-threatening anaphylaxis in a small fraction of immunized people. A causal role of anti-PEG antibodies (Abs) has been proposed, but causality has not yet proven in an animal model. The aim of this study was to provide such evidence using pigs immunized against PEG, which displayed very high levels of anti-PEG antibodies (Abs). We also aimed to find evidence for a role of complement activation and thromboxane A2 release in blood to explore the mechanism of anaphylaxis. Methods: Pigs (n = 6) were immunized with 0.1 mg/kg PEGylated liposome (Doxebo) i.v., and the rise of anti-PEG IgG and IgM were measured in serial blood samples with ELISA. After âˆ¼2-3 weeks the animals were injected i.v. with 1/3 human dose of the PEGylated mRNA vaccine, Comirnaty, and the hemodynamic (PAP, SAP) cardiopulmonary (HR, EtCO2,), hematological (WBC, granulocyte, lymphocyte and platelet counts) parameters and blood immune mediators (anti-PEG IgM and IgG antibodies, thromboxane B2, C3a) were measured as endpoints of HSRs (anaphylaxis). Results: The level of anti-PEG IgM and IgG rose 5-10-thousand-fold in all of 6 pigs immunized with Doxebo by day 6, after which time all animals developed anaphylactic shock to i.v. injection of 1/3 human dose of Comirnaty. The reaction, starting within 1 min involved maximal pulmonary hypertension and decreased systemic pulse pressure amplitude, tachycardia, granulo- and thrombocytopenia, and skin reactions (flushing or rash). These physiological changes or their absence were paralleled by C3a and TXB2 rises in blood. Conclusions: Consistent with previous studies, these data show a causal role of anti-PEG Abs in the anaphylaxis to Comirnaty, which involves complement activation, and, hence, it represents C activation-related pseudo-anaphylaxis. The setup provides the first large-animal model for mRNA-vaccine-induced anaphylaxis in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA