RESUMO
Hedgehogs, as medium-sized plantigrade insectivores with low basal metabolic rates and related defensive anti-predator strategies, are quite sensitive to temperature and ecosystem productivity. Their ranges therefore changed dramatically due to Pleistocene climate oscillations, resulting in allopatric speciation and the subsequent formation of secondary contact zones. Such interactions between closely related species are known to generate strong evolutionary forces responsible for niche differentiation. In this connection, here, we detail the results of research on the phenotypic evolution in the two species of hedgehog present in central Europe, as based on genetics and geometric morphometrics in samples along a longitudinal transect that includes the contact zone between the species. While in allopatry, Erinaceus europaeus is found to have a larger skull than E. roumanicus and distinct cranial and mandibular shapes; the members of the two species in sympatry are smaller and more similar to each other, with a convergent shape of the mandible. The relevant data fail to reveal any major role for either hybridisation or clinal variation. We, therefore, hypothesise that competitive pressure exerted on the studied species does not generate divergent selection sufficient for divergent character displacement to evolve, instead giving rise to convergent selection in the face of resource limitation in the direction of smaller skull size. Considering the multi-factorial constraints present in the relevant adaptive landscape, reduction in size could also be facilitated by predator pressure in ecosystems characterised by mesopredator release and other anthropogenic factors. As the function of the animals' lower jaw is mainly connected with feeding (in contrast to the cranium whose functions are obviously more complex), we interpret the similarity in shape as reflecting local adaptations to overlapping dietary resources in the two species and hence as convergent character displacement.
RESUMO
Studies investigating host-parasite systems rarely deal with multispecies interactions, and mostly explore impacts on hosts as individuals. Much less is known about the effects at colony level, when parasitism involves host organisms that form societies. We surveyed the effect of an ectoparasitic fungus, Rickia wasmannii, on kin-discrimination abilities of its host ant, Myrmica scabrinodis, identifying potential consequences at social level and subsequent changes in colony infiltration success of other organisms. Analyses of cuticular hydrocarbons (CHCs), known to be involved in insects' discrimination processes, revealed variations in chemical profiles correlated with the infection status of the ants, that could not be explained by genetic variation tested by microsatellites. In behavioural assays, fungus-infected workers were less aggressive towards both non-nestmates and unrelated queens, enhancing the probability of polygyny. Likewise, parasitic larvae of Maculinea butterflies had a higher chance of adoption by infected colonies. Our study indicates that pathogens can modify host recognition abilities, making the society more prone to accept both conspecific and allospecific organisms.
Assuntos
Formigas/parasitologia , Comportamento Animal , Fungos/fisiologia , Interações Hospedeiro-Parasita , Micoses , Animais , Formigas/química , Hidrocarbonetos/análiseRESUMO
The Great evening bat Ia io Thomas, 1902, previously considered as an endemic to the Indochinese subregion, is reported from the Sundaic subregion for the first time based on specimens collected from three localities in Surat Thani Province and Phang Nga Province, peninsular Thailand. It is described herein as a new subspecies based on its substantially larger body and skull size. The mitochondrial COI and cytochrome b genes reveal that the new subspecies has a genetic distance of 1.89% and 1.65%, respectively, from the nominate subspecies. Echolocation calls comprise four harmonics, with the maximum energy in the first harmonic (fmaxe) of 23.6-27.4 kHz. Notes on the population size as well as roosting and foraging behaviour are also provided.