Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Urban Ecosyst ; : 1-11, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36532698

RESUMO

Humans are transforming natural habitats into managed urban green areas and impervious surfaces at an unprecedented pace. Yet the effects of human presence per se on animal life-history traits are rarely tested. This is particularly true in cities, where human presence is often indissociable from urbanisation itself. The onset of the SARS-CoV-2 outbreak, along with the resulting lockdown restrictions, offered a unique, "natural experiment" to investigate wildlife responses to a sudden reduction in human activity. We analysed four years of avian breeding data collected in a European capital city to test whether lockdown measures altered nestbox occupancy and life-history traits in terms of egg laying date, incubation duration and clutch size in two urban adapters: great tits (Parus major) and blue tits (Cyanistes caeruleus). Lockdown measures, which modulated human presence, did not influence any of the life-history traits investigated. In contrast, the interaction between year and tree cover, a distinct ecological attribute of the urban space, was positively associated with clutch size, a key avian life-history and reproductive trait. This highlights the importance of inter-year variation and habitat quality over human activity on urban wildlife reproduction. We discuss our results in the light of other urban wildlife studies carried out during the pandemic, inviting the scientific community to carefully interpret all lockdown-associated shifts in biological traits. Supplementary Information: The online version contains supplementary material available at 10.1007/s11252-022-01309-5.

2.
Ecol Lett ; 23(2): 381-398, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31773847

RESUMO

Animal response to stressors such as harsh environmental conditions and demanding biological processes requires energy generated through increased mitochondrial activity. This results in the production of reactive oxygen species (ROS). In vitro and some in vivo studies suggest that oxidative damage of DNA caused by ROS is responsible for telomere shortening. Since telomere length is correlated with survival in many vertebrates, telomere loss is hypothesised to trigger cellular ageing and/ or to reflect the harshness of the environment an individual has experienced. To improve our understanding of stress-induced telomere dynamics in non-human vertebrates, we analysed 109 relevant studies in a meta-analytical framework. Overall, the exposure to possible stressors was associated with shorter telomeres or higher telomere shortening rate (average effect size = -0.16 ± 0.03). This relationship was consistent for all phylogenetic classes and for all a priori-selected stressor categories. It was stronger in the case of pathogen infection, competition, reproductive effort and high activity level, which emphasises their importance in explaining intraspecific telomere length variability and, potentially, lifespan variability. Interestingly, the association between stressor exposure and telomeres in one hand, and oxidative stress in the other hand, covaried, suggesting the implication of oxidative stress in telomere dynamics.


Assuntos
Encurtamento do Telômero , Telômero , Animais , Senescência Celular , Filogenia , Vertebrados
3.
Sci Total Environ ; 913: 168959, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38185570

RESUMO

Plastic is the most pervasive element of marine waste, with harmful impact on wildlife. By using iEcology (i.e., internet Ecology, use of online data sources as a new tool in ecological research), we report on the emergence of a novel behaviour in hermit crabs related to the use of plastic or other anthropogenic materials as protective shells. We analysed images posted on social media to identify 386 individuals with artificial shells - mainly plastic caps (85 %). We report that 10 of the world's 16 terrestrial hermit crabs use artificial shells, a behaviour observed on all of the Earth's tropical coasts. Four non-exclusive mechanisms may drive individual choice for artificial shells: sexual signaling, lightness of artificial shells, odour cues, and camouflage in a polluted environment. Further research is needed to determine the impact of this behaviour on hermit crab evolutionary trajectories.


Assuntos
Anomuros , Humanos , Animais , Evolução Biológica , Odorantes , Animais Selvagens
4.
Ecol Evol ; 14(6): e11633, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919647

RESUMO

Urban evolutionary ecology is inherently interdisciplinary. Moreover, it is a field with global significance. However, bringing researchers and resources together across fields and countries is challenging. Therefore, an online collaborative research hub, where common methods and best practices are shared among scientists from diverse geographic, ethnic, and career backgrounds would make research focused on urban evolutionary ecology more inclusive. Here, we describe a freely available online research hub for toolkits that facilitate global research in urban evolutionary ecology. We provide rationales and descriptions of toolkits for: (1) decolonizing urban evolutionary ecology; (2) identifying and fostering international collaborative partnerships; (3) common methods and freely-available datasets for trait mapping across cities; (4) common methods and freely-available datasets for cross-city evolutionary ecology experiments; and (5) best practices and freely available resources for public outreach and communication of research findings in urban evolutionary ecology. We outline how the toolkits can be accessed, archived, and modified over time in order to sustain long-term global research that will advance our understanding of urban evolutionary ecology.

5.
Nat Ecol Evol ; 8(6): 1074-1086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641700

RESUMO

Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.


Assuntos
Evolução Biológica , Cidades , Mutação , Urbanização , Humanos , Taxa de Mutação , Animais
6.
Ecol Evol ; 13(6): e10163, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37304370

RESUMO

Most of what is known about extra-pair paternity in hole-nesting birds derives from studies using artificial nesting sites, such as nestboxes. However, it has rarely been investigated whether inference drawn from breeding events taking place in nestboxes matches what would be observed under natural conditions, that is, in natural cavities. We here report on a variation in promiscuity in blue tits and great tits nesting in natural cavities and nestboxes in an urban forest in Warsaw, Poland. Specifically, we tested whether local breeding density, local breeding synchrony, and extra-pair paternity (inferred from SNP data generated with a high-throughput genotyping by sequencing method) differed between birds nesting in natural cavities and nestboxes. In both blue tits and great tits, the frequency of extra-pair paternity was similar between the two cavity types. In blue tits, we observed shorter nearest neighbor distance, higher neighbor density, and higher synchronous neighbor density (i.e., density of fertile females) in nestboxes relative to natural cavities. No such pattern was found in great tits. Moreover, we detected a positive relationship between the proportion of extra-pair offspring in the nest and neighbor density around the nest in blue tits. Our results revealed that the provisioning of nestboxes did not change rates of extra-pair paternity, suggesting that conclusions drawn from nestbox studies might adequately represent the natural variation in extra-pair matings in some species or sites. However, the observed differences in spatiotemporal components of breeding dynamics highlight the fact that these parameters should be carefully considered when comparing mating behavior across studies and/or sites.

7.
Ecol Evol ; 12(8): e9232, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36052299

RESUMO

Collecting and storing biological material from wild animals in a way that does not deteriorate DNA quality for subsequent analyses is instrumental for research in ecology and evolution. Our aims were to gather reports on the effectiveness of methods commonly used by researchers for the field collection and long-term storage of blood samples and DNA extracts from wild birds. Personal experiences were collected with an online survey targeted specifically at researchers sampling wild birds. Many researchers experienced problems with blood sample storage but not with DNA extract storage. Storage issues generated problems with obtaining adequate DNA quality and sufficient DNA quantity for the targeted molecular analyses but were not related to season of blood sampling, access to equipment, transporting samples, temperature, and method of blood storage. Final DNA quality and quantity were also not affected by storage time before DNA extraction or the methods used to extract DNA. We discuss practical aspects of field collection and storage and provide some general recommendations, with a list of pros and cons of different preservation methods of avian blood samples and DNA extracts.

8.
Sci Total Environ ; 838(Pt 2): 156034, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35595141

RESUMO

Solid waste pollution (garbage discarded by humans, such as plastic, metal, paper) has received increased attention given its importance as a global threat to biodiversity. Recent studies highlight how animals incorporate anthropogenic materials into their life-cycle, for example in avian nest construction. While increasingly monitored in natural areas, the influence of solid waste pollution on wildlife has been seldom explored in the urban habitat. There is limited data on the relationship between anthropogenic solid waste pollution, nest design, and reproductive success in an urban context. We address this knowledge gap (i) by investigating the presence of environmental solid waste pollution in the breeding habitats of great tits Parus major and blue tits Cyanistes caeruleus reproducing in a gradient of urbanisation, and (ii) by quantifying (ii) the contribution of different anthropogenic materials in their nests. We further examine potential drivers of solid waste pollution by inferring three distinct properties of the urban space: environmental solid waste pollution on the ground, human presence, and the intensity of urbanisation (e.g impervious surfaces) in nestbox vicinity. Finally, (iii) we explore the relationship between anthropogenic nest materials and reproductive success. We found that environmental solid waste pollution was positively associated with human presence and urbanisation intensity. There was also a positive relationship between increased human presence and the amount of anthropogenic materials in great tit nests. Interestingly, in both species, anthropogenic nest materials covaried negatively with nest materials of animal origin (fur and feathers). We suggest that fur and feathers - key insulating materials in nest design - may be scarcer in areas with high levels of human presence, and are consequently replaced with anthropogenic nest materials. Finally, we report a negative relationship between anthropogenic nest materials and blue tit reproductive success, suggesting species-specific vulnerability of urban birds to solid waste pollution.


Assuntos
Passeriformes , Aves Canoras , Animais , Poluição Ambiental/análise , Fenótipo , Resíduos Sólidos
9.
Sci Total Environ ; 847: 157450, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35863574

RESUMO

Most research on urban avian ecology has focused on population- and community-level phenomena, whereas fewer studies have examined how urbanization affects individual behavioral responses to a sudden and novel stimulus, and how those translate to fitness. We measured between-individual variation in provisioning latency in two urban adapters - great tits and blue tits - in response to an infrared camera installed in the nestbox, encountered when offspring in the nest were at the peak of food demand (9-10-days old). For each nestbox, we quantified urbanization as intensity in human activity, distance to road and proportion of impervious surface area. In both species, provisioning latency increased closer to roads. Moreover, increased provisioning latency when exposed to a novel object was associated with higher reproductive success in great tits whose nestboxes were surrounded by high amounts of impervious surface. In contrast, increased provisioning latency was consistently associated with lower reproductive success in blue tits. Our results suggest that provisioning latency changes in relation to the environment surrounding the nest, and may be context- and species-specific when exposed to a novel stimulus, such as a novel object in the nest. To better understand the role of initial behavioral responses towards novelty across an individual's lifetime and, ultimately, its impact on fitness in the urban mosaic, further research explicitly testing different behavioral responses across the entire breeding cycle in wild model systems is needed.


Assuntos
Passeriformes , Aves Canoras , Animais , Adaptação Psicológica , Passeriformes/fisiologia , Reprodução , Aves Canoras/fisiologia , Urbanização
10.
Sci Rep ; 12(1): 6872, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477720

RESUMO

Urbanisation is a major anthropogenic perturbation presenting novel ecological and evolutionary challenges to wild populations. Symbiotic microorganisms residing in the gastrointestinal tracts (gut) of vertebrates have mutual connections with host physiology and respond quickly to environmental alterations. However, the impact of anthropogenic changes and urbanisation on the gut microbiota remains poorly understood, especially in early development. To address this knowledge gap, we characterised the gut microbiota of juvenile great tits (Parus major) reared in artificial nestboxes and in natural cavities in an urban mosaic, employing two distinct frameworks characterising the urban space. Microbial diversity was influenced by cavity type. Alpha diversity was affected by the amount of impervious surface surrounding the breeding location, and positively correlated with tree cover density. Community composition differed between urban and rural sites: these alterations covaried with sound pollution and distance to the city centre. Overall, the microbial communities reflect and are possibly influenced by the heterogeneous environmental modifications that are typical of the urban space. Strikingly, the choice of framework and environmental variables characterising the urban space can influence the outcomes of such ecological studies. Our results open new perspectives to investigate the impact of microbial symbionts on the adaptive capacity of their hosts.


Assuntos
Microbioma Gastrointestinal , Microbiota , Passeriformes , Animais , Cidades , Melhoramento Vegetal
11.
Evol Appl ; 15(1): 149-165, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35126653

RESUMO

Identifying the molecular mechanisms involved in rapid adaptation to novel environments and determining their predictability are central questions in evolutionary biology and pressing issues due to rapid global changes. Complementary to genetic responses to selection, faster epigenetic variations such as modifications of DNA methylation may play a substantial role in rapid adaptation. In the context of rampant urbanization, joint examinations of genomic and epigenomic mechanisms are still lacking. Here, we investigated genomic (SNP) and epigenomic (CpG methylation) responses to urban life in a passerine bird, the Great tit (Parus major). To test whether urban evolution is predictable (i.e. parallel) or involves mostly nonparallel molecular processes among cities, we analysed both SNP and CpG methylation variations across three distinct pairs of city and forest Great tit populations in Europe. Our analyses reveal a polygenic response to urban life, with both many genes putatively under weak divergent selection and multiple differentially methylated regions (DMRs) between forest and city great tits. DMRs mainly overlapped transcription start sites and promotor regions, suggesting their importance in modulating gene expression. Both genomic and epigenomic outliers were found in genomic regions enriched for genes with biological functions related to the nervous system, immunity, or behavioural, hormonal and stress responses. Interestingly, comparisons across the three pairs of city-forest populations suggested little parallelism in both genetic and epigenetic responses. Our results confirm, at both the genetic and epigenetic levels, hypotheses of polygenic and largely nonparallel mechanisms of rapid adaptation in novel environments such as urbanized areas.

12.
Ecol Evol ; 12(11): e9552, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425909

RESUMO

Although the field of urban evolutionary ecology has recently expanded, much progress has been made in identifying adaptations that arise as a result of selective pressures within these unique environments. However, as studies within urban environments have rapidly increased, researchers have recognized that there are challenges and opportunities in characterizing urban adaptation. Some of these challenges are a consequence of increased direct and indirect human influence, which compounds long-recognized issues with research on adaptive evolution more generally. In this perspective, we discuss several common research challenges to urban adaptation related to (1) methodological approaches, (2) trait-environment relationships and the natural history of organisms, (3) agents and targets of selection, and (4) habitat heterogeneity. Ignoring these challenges may lead to misconceptions and further impede our ability to draw conclusions regarding evolutionary and ecological processes in urban environments. Our goal is to first shed light on the conceptual challenges of conducting urban adaptation research to help avoid the propagation of these misconceptions. We further summarize potential strategies to move forward productively to construct a more comprehensive picture of urban adaptation, and discuss how urban environments also offer unique opportunities and applications for adaptation research.

13.
Trends Ecol Evol ; 37(11): 1006-1019, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995606

RESUMO

Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.


Assuntos
Ecossistema , Urbanização , Biodiversidade , Cidades , Ecologia/métodos , Humanos
14.
Mol Ecol ; 20(19): 3949-52, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21951418

RESUMO

Genome-wide heterozygosity inferred from neutral markers such as microsatellites is often expected to (i) reflect individual inbreeding and (ii) covary positively with fitness, generating positive heterozygosity-fitness correlations (HFCs). The often forgotten other end of the inbreeding-outbreeding continuum is outbreeding depression: past a certain degree of heterozygosity, heterozygotes tend to have lower fitness than homozygotes. Outbreeding depression arises from the breakup of co-adapted gene complexes and/or the introgression of nonlocally adapted genes. Provided that a correlation in heterozygosity exists across loci, outbreeding depression will be reflected in negative HFCs. In this issue, Olano-Marin et al. (2011a) describe negative heterozygosity-fitness correlations (HFCs) in blue tits Cyanistes caeruleus (Fig. 1), whereby heterozygosity has a significant, negative effect on female hatching success and recruitment. This study, together with a similar study by the same authors published in Evolution (Olano-Marin et al. 2011b), forms an original contribution in two respects. First, in the same population, positive and negative HFCs were recorded, revealing both inbreeding and outbreeding depression depending on the trait studied (whereby both processes were reliant on unknown, and possibly different, sets of coding loci). Second, a large number of microsatellite markers were split into two functional groups: microsatellite markers were either designed using zebra finch expressed sequence tags (ESTs) or derived using traditional cloning methods and presumed to be neutral. Contrasting large classes of loci and their varying levels of polymorphism, rather than looking for one locus that would stand out among tens of randomly selected markers, pave the way for a more elegant and powerful approach to explore how HFCs vary across traits and among regions of the genome. [Figure: see text].


Assuntos
Heterozigoto , Passeriformes/genética , Animais , Feminino , Masculino
15.
Sci Rep ; 11(1): 19662, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608262

RESUMO

While there are increasing examples of phenotypic and genotypic differences between urban and non-urban populations of plants and animals, few studies identified the mechanisms explaining those dissimilarities. The characterization of the urban landscape, which can only be achieved by measuring variability in relevant environmental factors within and between cities, is a keystone prerequisite to understand the effects of urbanization on wildlife. Here, we measured variation in bird exposure to metal pollution within 8 replicated urbanization gradients and within 2 flagship bird species in urban evolutionary ecology: the blue tit (Cyanistes caeruleus) and the great tit (Parus major). We report on a highly significant, positive linear relationship between the magnitude of urbanization-inferred as either tree cover, impervious surface cover, or an urbanization score computed from several environmental variables, and copper, zinc and lead concentrations in bird feathers. The reverse relationship was measured in the case of mercury, while cadmium and arsenic did not vary in response to the urbanization level. This result, replicated across multiple cities and two passerine species, strongly suggests that copper, zinc, lead and mercury pollution is likely to trigger the emergence of parallel responses at the phenotypic and/or genotypic level between urban environments worldwide.

16.
Evol Appl ; 14(1): 69-84, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33519957

RESUMO

INTRODUCTION: Rapid environmental change driven by urbanization offers a unique insight into the adaptive potential of urban-dwelling organisms. Urban-driven phenotypic differentiation is increasingly often demonstrated, but the impact of urbanization (here modelled as the percentage of impervious surface (ISA) around each nestbox) on offspring developmental rates and subsequent survival remains poorly understood. Furthermore, the role of selection on urban-driven phenotypic divergence was rarely investigated to date. METHODS AND RESULTS: Data on nestling development and body mass were analysed in a gradient of urbanization set in Warsaw, Poland, in two passerine species: great tits (Parus major) and blue tits (Cyanistes caeruleus). Increasing levels of impervious surface area (ISA) delayed the age of fastest growth in blue tits. Nestling body mass was also negatively affected by increasing ISA 5 and 10 days after hatching in great tits, and 10 and 15 days in blue tits, respectively. High levels of ISA also increased nestling mortality 5 and 10 days after hatching in both species. An analysis of selection differentials performed for two levels of urbanization (low and high ISA) revealed a positive association between mass at day 2 and survival at fledging. DISCUSSION: This study confirms the considerable negative impact of imperviousness-a proxy for urbanization level-on offspring development, body mass and survival, and highlights increased selection on avian mass at hatching in a high ISA environment.

17.
Evol Appl ; 14(1): 248-267, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33519968

RESUMO

Cities are uniquely complex systems regulated by interactions and feedbacks between nature and human society. Characteristics of human society-including culture, economics, technology and politics-underlie social patterns and activity, creating a heterogeneous environment that can influence and be influenced by both ecological and evolutionary processes. Increasing research on urban ecology and evolutionary biology has coincided with growing interest in eco-evolutionary dynamics, which encompasses the interactions and reciprocal feedbacks between evolution and ecology. Research on both urban evolutionary biology and eco-evolutionary dynamics frequently focuses on contemporary evolution of species that have potentially substantial ecological-and even social-significance. Still, little work fully integrates urban evolutionary biology and eco-evolutionary dynamics, and rarely do researchers in either of these fields fully consider the role of human social patterns and processes. Because cities are fundamentally regulated by human activities, are inherently interconnected and are frequently undergoing social and economic transformation, they represent an opportunity for ecologists and evolutionary biologists to study urban "socio-eco-evolutionary dynamics." Through this new framework, we encourage researchers of urban ecology and evolution to fully integrate human social drivers and feedbacks to increase understanding and conservation of ecosystems, their functions and their contributions to people within and outside cities.

18.
Curr Biol ; 16(18): R810-2, 2006 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-16979552

RESUMO

Inbreeding in wild populations can have devastating effects on fitness, but the genetic causes should not be transmitted across generations. A new study of song sparrows has revealed a parent-offspring resemblance for inbreeding, resulting from population structuring, with important implications for understanding the genetic causes of phenotypic variation in wild populations.


Assuntos
Endogamia , Comportamento Sexual Animal , Pardais/genética , Animais , Evolução Biológica , Colúmbia Britânica , Meio Ambiente , Feminino , Masculino , Linhagem , Seleção Genética , Pardais/fisiologia
19.
Mol Ecol ; 18(11): 2444-56, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19457200

RESUMO

The timing of reproduction in birds varies considerably within populations and is often under strong natural selection. Individual timing within years is dependent on a range of environmental factors in addition to having an additive genetic basis. In vertebrates, an increasing amount is known about the molecular basis for variation in biological timing. The Clock gene includes a variable poly-glutamine (poly-Q) repeat influencing behaviour and physiology. Recent work in birds, fish and insects has demonstrated associations between Clock genotype and latitude across populations, which match latitudinal variation in breeding time. In this study, we investigated the phenotypic correlates of variation in Clock genotype within a single blue tit Cyanistes caeruleus population over two successive breeding seasons. In females, but not in males, we observed a general trend for birds with fewer poly-Q repeats to breed earlier in the season. Incubation duration was shorter in both females and males with fewer repeats at the polymorphic Clock locus. Poly-Q Clock allele-frequency was homogenously distributed within the study population and did not exhibit any consistent environment-related variation. We further tested for effects of Clock genotype on reproductive success and survival, and found that females with fewer poly-Q repeats produced a higher number of fledged offspring. Our results therefore suggest that (i) selection in females, but not in males, for fewer poly-Q repeats may be operating, (ii) the across-population associations in timing of breeding involving this locus could be linked to variation within populations, and (iii) the Clock gene might be involved in local adaptation to seasonal environments.


Assuntos
Genética Populacional , Passeriformes/genética , Reprodução/genética , Estações do Ano , Transativadores/genética , Animais , Proteínas CLOCK , Feminino , Frequência do Gene , Genótipo , Masculino , Fenótipo , Polimorfismo Genético
20.
J Anim Ecol ; 78(4): 778-88, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19383076

RESUMO

1. In populations where inbreeding causes a substantial decrease in fitness, selection is expected to favour the evolution of inbreeding avoidance behaviours. Elsewhere we have documented substantial inbreeding depression and the importance of dispersal in avoiding inbreeding in a long-term population study of the great tit Parus major in Wytham (UK). In this study, we ask whether individuals from this population actively avoid mating with kin. 2. We generated four contrasting models of random mate choice that assumed varying levels of mate availability in each year of the data set. This allowed us to compare observed and simulated distributions and frequencies of inbreeding coefficients from 41 years of breeding data. 3. We found no evidence that birds avoid mating with related partners. Our results show that birds breed more often with relatives than expected under null models of mate choice that lack population structure, but not when compared to scenarios where birds were mated with their nearest neighbours. Pedigree-derived F(IS) values were positive for all scenarios of random mating, confirming the lack of inbreeding avoidance in this population. 4. These results imply the existence of spatial genetic structure where related individuals occur closer together than nonrelated individuals while breeding, and suggest that the relatedness between breeding individuals of the opposite sex decreases with distance. Thus, while dispersal from the natal site decreases the number of relatives around an individual, it does not completely homogenize genetic structure. 5. We show that brother-sister pairs are observed more often than under any scenario of random mating, suggesting that not only birds do not avoid mating with kin, but also that the apparently maladaptive choice of mating with a sibling is made more often than expected. 6. Our results provide no evidence to suggest that individuals actively avoid kin. In fact, some types of inbreeding occur more often than expected, despite the substantial fitness costs. The observed lack of inbreeding avoidance is in agreement with other studies of non-cooperatively breeding passerine birds, although the higher than expected frequency of sibling mating remains a puzzling result.


Assuntos
Endogamia , Passeriformes/genética , Passeriformes/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino , Modelos Biológicos , Dinâmica Populacional , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA