Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(4): 1779-1792, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38180823

RESUMO

Planarians are organisms with a unique capacity to regenerate any part of their body. New tissues are generated in a process that requires many swift cell divisions. How costly is this process to an animal in terms of mutational load remains unknown. Using whole genome sequencing, we defined the mutational profile of the process of regeneration in the planarian species Schmidtea polychroa. We assembled de novo the genome of S. polychroa and analyzed mutations in animals that have undergone regeneration. We observed a threefold increase in the number of mutations and an altered mutational spectrum. High allele frequencies of subclonal mutations in regenerated animals suggested that most of the cells in the regenerated animal were descendants of a small number of stem cells with high expansion potential. We provide, for the first time, the draft genome assembly of S. polychroa, an estimation of the germline mutation rate for a planarian species and the mutational spectrum of the regeneration process of a living organism.


Assuntos
Planárias , Animais , Divisão Celular , Genoma , Mutação , Planárias/genética , Planárias/fisiologia , Regeneração , Células-Tronco
2.
EMBO J ; 40(22): e108225, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34605051

RESUMO

Cells with blocked microtubule polymerization are delayed in mitosis, but eventually manage to proliferate despite substantial chromosome missegregation. While several studies have analyzed the first cell division after microtubule depolymerization, we have asked how cells cope long-term with microtubule impairment. We allowed 24 clonal populations of yeast cells with beta-tubulin mutations preventing proper microtubule polymerization, to evolve for ˜150 generations. At the end of the laboratory evolution experiment, cells had regained the ability to form microtubules and were less sensitive to microtubule-depolymerizing drugs. Whole-genome sequencing identified recurrently mutated genes, in particular for tubulins and kinesins, as well as pervasive duplication of chromosome VIII. Recreating these mutations and chromosome VIII disomy prior to evolution confirmed that they allow cells to compensate for the original mutation in beta-tubulin. Most of the identified mutations did not abolish function, but rather restored microtubule functionality. Analysis of the temporal order of resistance development in independent populations repeatedly revealed the same series of events: disomy of chromosome VIII followed by a single additional adaptive mutation in either tubulins or kinesins. Since tubulins are highly conserved among eukaryotes, our results have implications for understanding resistance to microtubule-targeting drugs widely used in cancer therapy.


Assuntos
Epistasia Genética , Microtúbulos/metabolismo , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Adaptação Biológica/genética , Aneuploidia , Cromossomos Fúngicos , Regulação Fúngica da Expressão Gênica , Microtúbulos/genética , Polimerização , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequenciamento Completo do Genoma
3.
Nucleic Acids Res ; 51(20): 11040-11055, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37791890

RESUMO

DNA mismatch repair (MMR) corrects mismatched DNA bases arising from multiple sources including polymerase errors and base damage. By detecting spontaneous mutagenesis using whole genome sequencing of cultured MMR deficient human cell lines, we show that a primary role of MMR is the repair of oxygen-induced mismatches. We found an approximately twofold higher mutation rate in MSH6 deficient DLD-1 cells or MHL1 deficient HCT116 cells exposed to atmospheric conditions as opposed to mild hypoxia, which correlated with oxidant levels measured using electron paramagnetic resonance spectroscopy. The oxygen-induced mutations were dominated by T to C base substitutions and single T deletions found primarily on the lagging strand. A broad sequence context preference, dependence on replication timing and a lack of transcriptional strand bias further suggested that oxygen-induced mutations arise from polymerase errors rather than oxidative base damage. We defined separate low and high oxygen-specific MMR deficiency mutation signatures common to the two cell lines and showed that the effect of oxygen is observable in MMR deficient cancer genomes, where it best correlates with the contribution of mutation signature SBS21. Our results imply that MMR corrects oxygen-induced genomic mismatches introduced by a replicative process in proliferating cells.


Assuntos
Reparo de Erro de Pareamento de DNA , Mutagênese , Oxigênio , Humanos , Pareamento Incorreto de Bases , Reparo do DNA , Replicação do DNA , Mutação , Linhagem Celular
4.
PLoS Genet ; 18(2): e1010051, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130276

RESUMO

Translesion DNA synthesis (TLS) is a fundamental damage bypass pathway that utilises specialised polymerases with relaxed template specificity to achieve replication through damaged DNA. Misinsertions by low fidelity TLS polymerases may introduce additional mutations on undamaged DNA near the original lesion site, which we termed collateral mutations. In this study, we used whole genome sequencing datasets of chicken DT40 and several human cell lines to obtain evidence for collateral mutagenesis in higher eukaryotes. We found that cisplatin and UVC radiation frequently induce close mutation pairs within 25 base pairs that consist of an adduct-associated primary and a downstream collateral mutation, and genetically linked their formation to TLS activity involving PCNA ubiquitylation and polymerase κ. PCNA ubiquitylation was also indispensable for close mutation pairs observed amongst spontaneously arising base substitutions in cell lines with disrupted homologous recombination. Collateral mutation pairs were also found in melanoma genomes with evidence of UV exposure. We showed that collateral mutations frequently copy the upstream base, and extracted a base substitution signature that describes collateral mutagenesis in the presented dataset regardless of the primary mutagenic process. Using this mutation signature, we showed that collateral mutagenesis creates approximately 10-20% of non-paired substitutions as well, underscoring the importance of the process.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , DNA/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutação , Antígeno Nuclear de Célula em Proliferação/genética
5.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607954

RESUMO

BRCA1 germline mutations are associated with an increased risk of breast and ovarian cancer. Recent findings of others suggest that BRCA1 mutation carriers also bear an increased risk of esophageal and gastric cancer. Here, we employ a Brca1/Trp53 mouse model to show that unresolved replication stress (RS) in BRCA1 heterozygous cells drives esophageal tumorigenesis in a model of the human equivalent. This model employs 4-nitroquinoline-1-oxide (4NQO) as an RS-inducing agent. Upon drinking 4NQO-containing water, Brca1 heterozygous mice formed squamous cell carcinomas of the distal esophagus and forestomach at a much higher frequency and speed (∼90 to 120 d) than did wild-type (WT) mice, which remained largely tumor free. Their esophageal tissue, but not that of WT control mice, revealed evidence of overt RS as reflected by intracellular CHK1 phosphorylation and 53BP1 staining. These Brca1 mutant tumors also revealed higher genome mutation rates than those of control animals; the mutational signature SBS4, which is associated with tobacco-induced tumorigenesis; and a loss of Brca1 heterozygosity (LOH). This uniquely accelerated Brca1 tumor model is also relevant to human esophageal squamous cell carcinoma, an often lethal tumor.


Assuntos
Proteína BRCA1/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Perda de Heterozigosidade/genética , Proteína Supressora de Tumor p53/genética , 4-Nitroquinolina-1-Óxido/toxicidade , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Quinase 1 do Ponto de Checagem/metabolismo , Modelos Animais de Doenças , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/induzido quimicamente , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Mutação em Linhagem Germinativa/genética , Heterozigoto , Humanos , Perda de Heterozigosidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
6.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686184

RESUMO

Resistance to anticancer agents is a major obstacle to efficacious tumour therapy and responsible for high cancer-related mortality rates. Some resistance mechanisms are associated with pharmacokinetic variability in anticancer drug exposure due to genetic polymorphisms of drug-metabolizing cytochrome P450 (CYP) enzymes, whereas variations in tumoural metabolism as a consequence of CYP copy number alterations are assumed to contribute to the selection of resistant cells. A high-throughput quantitative polymerase chain reaction (qPCR)-based method was developed for detection of CYP copy number alterations in tumours, and a scoring system improved the identification of inappropriate reference genes that underwent deletion/multiplication in tumours. The copy numbers of both the target (CYP2C8, CYP3A4) and the reference genes (ALB, B2M, BCKDHA, F5, CD36, MPO, TBP, RPPH1) established in primary lung adenocarcinoma by the qPCR-based method were congruent with those determined by next-generation sequencing (for 10 genes, slope = 0.9498, r2 = 0.72). In treatment naïve adenocarcinoma samples, the copy number multiplication of paclitaxel-metabolizing CYP2C8 and/or CYP3A4 was more prevalent in non-responder patients with progressive disease/exit than in responders with complete remission. The high-throughput qPCR-based method can become an alternative approach to next-generation sequencing in routine clinical practice, and identification of altered CYP copy numbers may provide a promising biomarker for therapy-resistant tumours.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Sistema Enzimático do Citocromo P-450 , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , Variações do Número de Cópias de DNA , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Resistencia a Medicamentos Antineoplásicos/genética
7.
Mutagenesis ; 36(1): 75-86, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33502495

RESUMO

Platinum-based drugs are a mainstay of cancer chemotherapy. However, their mutagenic effect can increase tumour heterogeneity, contribute to the evolution of treatment resistance and also induce secondary malignancies. We coupled whole genome sequencing with phenotypic investigations on two cell line models to compare the magnitude and examine the mechanism of mutagenicity of cisplatin, carboplatin and oxaliplatin. Cisplatin induced significantly more base substitution mutations than carboplatin or oxaliplatin when used at equitoxic concentrations on human TK6 or chicken DT40 cells, and also induced the highest number of short insertions and deletions. The analysis of base substitution spectra revealed that all three tested platinum drugs elicit both a direct mutagenic effect at purine dinucleotides, and an indirect effect of accelerating endogenous mutagenic processes, whereas the direct mutagenic effect appeared to correlate with the level of DNA damage caused as assessed through histone H2AX phosphorylation and single-cell agarose gel electrophoresis, the indirect mutagenic effects were equal. The different mutagenicity and DNA-damaging effect of equitoxic platinum drug treatments suggest that DNA damage independent mechanisms significantly contribute to their cytotoxicity. Thus, the comparatively high mutagenicity of cisplatin should be taken into account in the design of chemotherapeutic regimens.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA , Linfócitos/patologia , Linfoma/patologia , Mutagênicos/efeitos adversos , Animais , Carboplatina/farmacologia , Células Cultivadas , Galinhas , Cisplatino/farmacologia , Humanos , Linfócitos/efeitos dos fármacos , Linfoma/tratamento farmacológico , Testes de Mutagenicidade , Oxaliplatina/farmacologia
8.
Int J Mol Sci ; 21(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053991

RESUMO

Breast cancer is the most commonly occurring cancer in women and the second most common cancer overall. By the age of 80, the estimated risk for breast cancer for women with germline BRCA1 or BRCA2 mutations is around 80%. Genetically engineered BRCA1-deficient mouse models offer a unique opportunity to study the pathogenesis and therapy of triple negative breast cancer. Here we present a newly established Brca1-/-, p53-/- mouse mammary tumor cell line, designated as CST. CST shows prominent features of BRCA1-mutated triple-negative breast cancers including increased motility, high proliferation rate, genome instability and sensitivity to platinum chemotherapy and PARP inhibitors (olaparib, veliparib, rucaparib and talazoparib). Genomic instability of CST cells was confirmed by whole genome sequencing, which also revealed the presence of COSMIC (Catalogue of Somatic Mutations in Cancer) mutation signatures 3 and 8 associated with homologous recombination (HR) deficiency. In vitro sensitivity of CST cells was tested against 11 chemotherapy agents. Tumors derived from orthotopically injected CST-mCherry cells in FVB-GFP mice showed sensitivity to cisplatin, providing a new model to study the cooperation of BRCA1-KO, mCherry-positive tumor cells and the GFP-expressing stromal compartment in therapy resistance and metastasis formation. In summary, we have established CST cells as a new model recapitulating major characteristics of BRCA1-negative breast cancers.


Assuntos
Proteína BRCA1/genética , Neoplasias Mamárias Animais/genética , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Deleção de Genes , Instabilidade Genômica , Neoplasias Mamárias Animais/patologia , Camundongos , Neoplasias de Mama Triplo Negativas/patologia
9.
Int J Cancer ; 145(3): 694-704, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30694556

RESUMO

A retrospective determination of the time of metastasis formation is essential for a better understanding of the evolution of oligometastatic cancer. This study was based on the hypothesis that genomic alterations induced by cancer therapies could be used to determine the temporal order of the treatment and the formation of metastases. We analysed the whole genome sequence of a primary tumour sample and three metastatic sites derived from autopsy samples from a young never-smoker lung adenocarcinoma patient with an activating EGFR mutation. Mutation detection methods were refined to accurately detect and distinguish clonal and subclonal mutations. In comparison to a panel of samples from untreated smoker or never-smoker patients, we showed that the mutagenic effect of cisplatin treatment could be specifically detected from the base substitution mutations. Metastases that arose before or after chemotherapeutic treatment could be distinguished based on the allele frequency of cisplatin-induced dinucleotide mutations. In addition, genomic rearrangements and late amplification of the EGFR gene likely induced by afatinib treatment following the acquisition of a T790M gefitinib resistance mutation provided further evidence to tie the time of metastasis formation to treatment history. The established analysis pipeline for the detection of treatment-derived mutations allows the drawing of tumour evolutionary paths based on genomic data, showing that metastases may be seeded well before they become detectable by clinical imaging.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Cisplatino/administração & dosagem , Gefitinibe/administração & dosagem , Impressão Genômica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/administração & dosagem , Adenocarcinoma de Pulmão/sangue , Adenocarcinoma de Pulmão/patologia , Algoritmos , Cisplatino/efeitos adversos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Gefitinibe/efeitos adversos , Rearranjo Gênico , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Modelos Genéticos , Mutagênese/efeitos dos fármacos , Metástase Neoplásica , Estudos Retrospectivos
10.
Br J Cancer ; 119(11): 1392-1400, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30425352

RESUMO

BACKGROUND: Poly-ADP ribose polymerase (PARP) inhibitor-based cancer therapy selectively targets cells with deficient homologous recombination repair. Considering their long-term use in maintenance treatment, any potential mutagenic effect of PARP inhibitor treatment could accelerate the development of resistance or harm non-malignant somatic cells. METHODS: We tested the mutagenicity of long-term treatment with the PARP inhibitor niraparib using whole-genome sequencing of cultured cell clones and whole-exome sequencing of patient-derived breast cancer xenografts. RESULTS: We observed no significant increase in the number and alteration in the spectrum of base substitutions, short insertions and deletions and genomic rearrangements upon niraparib treatment of human DLD-1 colon adenocarcinoma cells, wild-type and BRCA1 mutant chicken DT40 lymphoblastoma cells and BRCA1-defective SUM149PT breast carcinoma cells, except for a minor increase in specific deletion classes. We also did not detect any contribution of in vivo niraparib treatment to subclonal mutations arising in breast cancer-derived xenografts. CONCLUSIONS: The results suggest that long-term inhibition of DNA repair with PARP inhibitors has no or only limited mutagenic effect. Mutagenesis due to prolonged use of PARP inhibitors in cancer treatment is therefore not expected to contribute to the genetic evolution of resistance, generate significant immunogenic neoepitopes or induce secondary malignancies.


Assuntos
Antineoplásicos/uso terapêutico , Indazóis/uso terapêutico , Mutação , Piperidinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos
11.
DNA Repair (Amst) ; 139: 103694, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788323

RESUMO

Multiple separate repair mechanisms safeguard the genome against various types of DNA damage, and their failure can increase the rate of spontaneous mutagenesis. The malfunction of distinct repair mechanisms leads to genomic instability through different mutagenic processes. For example, defective mismatch repair causes high base substitution rates and microsatellite instability, whereas homologous recombination deficiency is characteristically associated with deletions and chromosome instability. This review presents a comprehensive collection of all mutagenic phenotypes associated with the loss of each DNA repair mechanism, drawing on data from a variety of model organisms and mutagenesis assays, and placing greatest emphasis on systematic analyses of human cancer datasets. We describe the latest theories on the mechanism of each mutagenic process, often explained by reliance on an alternative repair pathway or the error-prone replication of unrepaired, damaged DNA. Aided by the concept of mutational signatures, the genomic phenotypes can be used in cancer diagnosis to identify defective DNA repair pathways.


Assuntos
Reparo do DNA , Mutagênese , Humanos , Animais , Neoplasias/genética , Dano ao DNA , Instabilidade Genômica , Reparo de Erro de Pareamento de DNA
12.
Chemosphere ; 362: 142700, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936485

RESUMO

Pesticides are significant environmental pollutants, and many of them possess mutagenic potential, which is closely linked to carcinogenesis. Here we tested the mutagenicity of all six pesticides classified probably carcinogenic (Group 2A) by the International Agency of Research on Cancer: 4,4'-DDT, captafol, dieldrin, diazinon, glyphosate and malathion. Whole genome sequencing of TK6 human lymphoblastoid cell clones following 30-day exposure at subtoxic concentrations revealed a clear mutagenic effect of treatment with captafol or malathion when added at 200 nM or 100 µM initial concentrations, respectively. Each pesticide induced a specific base substitution mutational signature: captafol increased C to A mutations primarily, while malathion induced mostly C to T mutations. 4,4'-DDT, dieldrin, diazinon and glyphosate were not mutagenic. Whereas captafol induced chromosomal instability, H2A.X phosphorylation and cell cycle arrest in G2/M phase, all indicating DNA damage, malathion did not induce DNA damage markers or cell cycle alterations despite its mutagenic effect. Hypersensitivity of REV1 and XPA mutant DT40 chicken cell lines suggests that captafol induces DNA adducts that are bypassed by translesion DNA synthesis and are targets for nucleotide excision repair. The experimentally identified mutational signatures of captafol and malathion could shed light on the mechanism of action of these compounds. The signatures are potentially suitable for detecting past exposure in tumour samples, but the reanalysis of large cancer genome databases did not reveal any evidence of captafol or malathion exposure.


Assuntos
Testes de Mutagenicidade , Mutagênicos , Praguicidas , Humanos , Praguicidas/toxicidade , Mutagênicos/toxicidade , Dano ao DNA , Carcinógenos/toxicidade , Animais , Mutação , Linhagem Celular , Poluentes Ambientais/toxicidade
13.
Schizophr Res ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38290943

RESUMO

BACKGROUND: Schizophrenia (SCZ) is a severe neuropsychiatric disorder of complex, poorly understood etiology, associated with both genetic and environmental factors. De novo mutations (DNMs) represent a new source of genetic variation in SCZ, however, in most cases their biological significance remains unclear. We sought to investigate molecular disease pathways connected to DNMs in SCZ by combining human induced pluripotent stem cell (hiPSC) based disease modeling and CRISPR-based genome editing. METHODS: We selected a SCZ case-parent trio with the case individual carrying a potentially disease causing 1495C > T nonsense DNM in the zinc finger MYND domain-containing protein 11 (ZMYND11), a gene implicated in biological processes relevant for SCZ. In the patient-derived hiPSC line the mutation was corrected using CRISPR, while monoallelic or biallelic frameshift mutations were introduced into a control hiPSC line. Isogenic cell lines were differentiated into hippocampal neuronal progenitor cells (NPCs) and functionally active dentate gyrus granule cells (DGGCs). Immunofluorescence microscopy and RNA sequencing were used to test for morphological and transcriptomic differences at NPC and DGCC stages. Functionality of neurons was investigated using calcium-imaging and multi-electrode array measurements. RESULTS: Morphology in the mutant hippocampal NPCs and neurons was preserved, however, we detected significant transcriptomic and functional alterations. RNA sequencing showed massive upregulation of neuronal differentiation genes, and downregulation of cell adhesion genes. Decreased reactivity to glutamate was demonstrated by calcium-imaging. CONCLUSIONS: Our findings lend support to the involvement of glutamatergic dysregulation in the pathogenesis of SCZ. This approach represents a powerful model system for precision psychiatry and pharmacological research.

14.
NPJ Precis Oncol ; 8(1): 208, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39294262

RESUMO

We analyzed genomic data from the prostate cancer of African- and European American men to identify differences contributing to racial disparity of outcome. We also performed FISH-based studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CHD1-deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. Subclonal deletion of CHD1 was nearly three times as frequent in prostate tumors of African American than in European American men and it associates with rapid disease progression. CHD1 deletion was not associated with HR deficiency associated mutational signatures or HR deficiency as detected by RAD51 foci formation. This was consistent with the moderate increase of olaparib and talazoparib sensitivity with several CHD1 deficient cell lines showing talazoparib sensitivity in the clinically relevant concentration range. CHD1 loss may contribute to worse disease outcome in African American men.

15.
Res Sq ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38645014

RESUMO

We analyzed genomic data derived from the prostate cancer of African and European American men in order to identify differences that may contribute to racial disparity of outcome and that could also define novel therapeutic strategies. In addition to analyzing patient derived next generation sequencing data, we performed FISH based confirmatory studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CRISPR edited, CHD1 deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. We found that subclonal deletion of CHD1 is nearly three times as frequent in prostate tumors of African American men than in men of European ancestry and it associates with rapid disease progression. We further showed that CHD1 deletion is not associated with homologous recombination deficiency associated mutational signatures in prostate cancer. In prostate cancer cell line models CHD1 deletion did not induce HR deficiency as detected by RAD51 foci formation assay or mutational signatures, which was consistent with the moderate increase of olaparib sensitivity. CHD1 deficient prostate cancer cells, however, showed higher sensitivity to talazoparib. CHD1 loss may contribute to worse outcome of prostate cancer in African American men. A deeper understanding of the interaction between CHD1 loss and PARP inhibitor sensitivity will be needed to determine the optimal use of targeted agents such as talazoparib in the context of castration resistant prostate cancer.

16.
PLoS Genet ; 6(10)2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20949111

RESUMO

Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη(-/-)/POLζ(-/-) cells from the chicken DT40 cell line. POLζ(-/-) cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη(-/-)/POLζ(-/-) cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ(-/-) cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/genética , Mutação , Animais , Antineoplásicos/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Galinhas , Cisplatino/farmacologia , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Células HEK293 , Humanos , Metanossulfonato de Metila/farmacologia , Modelos Genéticos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Supressão Genética , Raios Ultravioleta
17.
Biochimie ; 214(Pt A): 33-44, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36707016

RESUMO

Guanine quadruplexes (G4s) are stable four-stranded secondary DNA structures held together by noncanonical G-G base tetrads. We synthesised the nucleoside analogue 2'-deoxy-5-hydroxyuridine (H) and inserted its phosphoramidite into telomeric repeat-type model oligonucleotides. Full and partial substitutions were made, replacing all guanines in all the three tetrads of a three-tier G4 structure, or only in the putative upper, central, or lower tetrads. We characterised these modified structures using CD, UV absorbance spectroscopy, native gel studies, and a capture oligo-based G4 disruption kinetic assay. The strand separation activity of BLM helicase on these substituted structures was also investigated. Two of the partially H-substituted constructs adopted G4-like structures, but displayed lower thermal stabilities compared to unsubstituted G4. The construct modified in its central tetrad remained mostly denatured, but the possibility of a special structure for the fully replaced variant remained open. H substitutions did not interfere with the G4-resolving activity of BLM helicase, but its efficiency was highly influenced by construct topology and even more by the G4 ligand PhenDC3. Our results suggest that the H modification can be incorporated into G quadruplexes, but only at certain positions to maintain G4 stability. The destabilizing effect observed for 2'-deoxy-5-hydroxyuridine indicates that the cytosine deamination product 5-hydroxyuracil and its nucleoside counterpart in RNA (5-hydroxyuridine), might also be destabilizing in cellular DNA and RNA quadruplexes. The kinetic assay employed in this study can be generally employed for a fast comparison of the stabilities of various G4s either in their free or ligand-bound states.


Assuntos
DNA , Quadruplex G , Ligantes , DNA/genética , DNA/química , DNA Helicases/genética , RNA/química
18.
Cell Rep ; 42(8): 112887, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37498746

RESUMO

Translesion DNA synthesis (TLS) facilitates replication over damaged or difficult-to-replicate templates by employing specialized DNA polymerases. We investigate the effect on spontaneous mutagenesis of three main TLS control mechanisms: REV1 and PCNA ubiquitylation that recruit TLS polymerases and PRIMPOL that creates post-replicative gaps. Using whole-genome sequencing of cultured human RPE-1 cell clones, we find that REV1 and Polymerase ζ are wholly responsible for one component of base substitution mutagenesis that resembles homologous recombination deficiency, whereas the remaining component that approximates oxidative mutagenesis is reduced in PRIMPOL-/- cells. Small deletions in short repeats appear in REV1-/-PCNAK164R/K164R double mutants, revealing an alternative TLS mechanism. Also, 500-5,000 bp deletions appear in REV1-/- and REV3L-/- mutants, and chromosomal instability is detectable in REV1-/-PRIMPOL-/- cells. Our results indicate that TLS protects the genome from deletions and large rearrangements at the expense of being responsible for the majority of spontaneous base substitutions.

19.
Science ; 376(6591): 351-352, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35446665

RESUMO

Analysis of cancer genome sequences reveals new mutational signatures.


Assuntos
Neoplasias , Genoma Humano , Humanos , Mutação , Neoplasias/genética
20.
Cell Rep ; 38(12): 110555, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35320711

RESUMO

Mutational signatures defined by single base substitution (SBS) patterns in cancer have elucidated potential mutagenic processes that contribute to malignancy. Two prevalent mutational patterns in human cancers are attributed to the APOBEC3 cytidine deaminase enzymes. Among the seven human APOBEC3 proteins, APOBEC3A is a potent deaminase and proposed driver of cancer mutagenesis. In this study, we prospectively examine genome-wide aberrations by expressing human APOBEC3A in avian DT40 cells. From whole-genome sequencing, we detect hundreds to thousands of base substitutions per genome. The APOBEC3A signature includes widespread cytidine mutations and a unique insertion-deletion (indel) signature consisting largely of cytidine deletions. This multi-dimensional APOBEC3A signature is prevalent in human cancer genomes. Our data further reveal replication-associated mutations, the rate of stem-loop and clustered mutations, and deamination of methylated cytidines. This comprehensive signature of APOBEC3A mutagenesis is a tool for future studies and a potential biomarker for APOBEC3 activity in cancer.


Assuntos
Neoplasias , Citidina , Citidina Desaminase , Genoma Humano , Humanos , Mutagênese , Neoplasias/genética , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA