Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 54(3): 393-406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37671950

RESUMO

Agar oligosaccharides are thought to be valuable biomolecules with high bioactivity potential, along with a wide range of applications and advantages. The current study aimed to optimize the culture parameters required to produce agarase enzyme and agar oligosaccharides from industrial waste agar. Microbacterium spp. strain SS5 was isolated from a non-marine source and could synthesize oligo derivatives for use in a variety of industries ranging from food to pharmaceuticals. In addition, the strain and culture conditions were optimized to maximize extracellular agarase production. The bacterium grew best at pH 5.0 - 9.0, with an optimal pH of 7.5 - 8.0; temperatures ranging from 25 to 45 °C, with an optimal of 35 °C; and carbon and nitrogen concentrations of 0.5% each. Plackett-Burman experimental design and response surface methods were used to optimize various process parameters for agarase production by Microbacterium spp. strain SS5. Using the Plackett-Burman experimental design, eleven process factors were screened, and agar, beef extract, CaCl2, and beginning pH were found as the most significant independent variables affecting agarase production with confidence levels above 90%. To determine the optimal concentrations of the identified process factors on agarase production, the Box- Behnken design was used. Agarase production by Microbacterium spp. strain SS5 after optimization was 0.272 U/mL, which was determined to be greater than the result obtained from the basal medium (0.132 U/mL) before screening using Plackett-Burman and BBD with a fold increase of 2.06.


Assuntos
Glicosídeo Hidrolases , Microbacterium , Oligossacarídeos , Ágar/química , Temperatura
2.
Hippocampus ; 33(9): 1058-1066, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37254828

RESUMO

Well known as the center for learning and memory, hippocampus is the crucial brain region to study synaptic plasticity in the context of cellular fundamental mechanisms such as long-term depression (LTD) and long-term potentiation (LTP). However, despite years of extensive research, the key to our LTD queries and their induction mechanisms has not been fully understood. Previously, we reported the induction of late-LTD (L-LTD) in the distally located synapses of apical branch of hippocampal CA1 dendrites using strong low-frequency stimulation (SLFS). In contrast synapses at the proximal site could not express L-LTD. Thus, in the present study, we wanted to investigate whether or not synapses of apical dendritic branch at the proximal location could induce and maintain LTD and its related properties in in vitro rat hippocampal slices. Results indicated that the SLFS in the distal and proximal region triggered the plasticity related proteins (PRP) synthesis in both regions, as evident by the induction and maintenance of L-LTD in the distal region by virtue of synaptic and cross-tagging. In addition, the application of emetine at the time of proximal input stimulation prevented the transition of early-LTD (E-LTD) into L-LTD at the distal region, proving PRP synthesis at the proximal site. Further, it was observed that weak low-frequency stimulation (WLFS) could induce E-LTD in the proximal region along with LTD-specific tag-setting at the synapses. In conclusion, the current study suggests unique findings that the synaptic and cross-tagging mediate L-LTD expression is maintained in the proximal location of hippocampus apical CA1 dendrites.


Assuntos
Depressão , Depressão Sináptica de Longo Prazo , Ratos , Animais , Ratos Wistar , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Dendritos/fisiologia
3.
Indian J Med Res ; 157(4): 281-292, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37282391

RESUMO

Venous thromboembolism (VTE), which entails the formation of a thrombus (blood clot) in a vein, has a significant disease burden worldwide. While VTE has traditionally been considered to predominantly affect Caucasian populations, recent studies have indicated a gradual shift in the disease burden towards Asian populations, with added significance of it being a key driver of post-operative mortality. It is imperative to develop a sound understanding of the various factors that affect VTE in stratified local populations. However, there is a glaring paucity of quality data on VTE and its ramifications among Indians - both in terms of quality of life and cost of healthcare. This review aims to throw light on the disease burden, epidemiology, risk factors, environmental factors, food and nutrition that plays a key role in VTE. We also explored the association of VTE with coronavirus disease 2019 to grasp the interplay between the two most significant public health crises of our time. It is vital to place a special emphasis on future research on VTE in India to plug the gaps, which exist in our current knowledge of the disease, particularly with respect to Indian population.


Assuntos
COVID-19 , Embolia Pulmonar , Trombose , Tromboembolia Venosa , Trombose Venosa , Humanos , Tromboembolia Venosa/epidemiologia , Qualidade de Vida , Fatores de Risco
4.
Lett Appl Microbiol ; 76(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37480232

RESUMO

According to the results of our investigation, distinct bacterial isolates capable of breaking down agar were found in various nonmarine environments. The deficiency of reducing sugar in the control media demonstrates that the agar in the experiment is broken down by the bacteria to produce various oligosaccharides because the viscosity of the medium containing the agar was found to have been extremely high before inoculation, reducing with incubation duration and attaining a maximum after 48 hours. These isolates were subsequently used in tests along with additional investigation since they could create reducing sugar. Interestingly, the deterioration of agar appears to be mainly caused by Gram-negative bacteria. In order to study the agarase properties, the relative quantity of the enzyme secreted by the bacteria that hydrolyze the agar was used. The detection of extracellular agarase surrounding the colonies and the absence of stained halos on iodine-treated agar plates show that the agarase diffusing from the bacteria impacted the characteristics of the gel. Inconclusion, these agarsase-producing bacteria can be exploited for industrial applications. Waste agar from the plant tissue culture business can be utilized for a range of applications and this degraded agar can be explored for reliable and ecologically safe alternatives.


Assuntos
Bactérias , Bactérias Gram-Negativas , Ágar/metabolismo , Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos , Açúcares
5.
Nutr Neurosci ; 25(1): 100-109, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32093571

RESUMO

Background: Piperine (PIP) is a powerful anti-oxidant and anti-inflammatory alkaloid which has been widely used in the treatment of various pathological conditions. However, few studies have clearly discussed the protective effects and potential mechanism of PIP in different neurological diseases. The aim of this study was to investigate the neuroprotective effect of PIP against 3-nitropropioninc acid (3-NP) induced neurobehavioral, biochemical and histopathological alterations in animals.Methods: Adult male Wistar rats were randomly divided into three groups. Group 1, the vehicle administered control group, received normal saline (p.o.). Group 2 received 3-NP (20 mg/kg.b.wt., i.p.) for 4 consecutive days. Group 3 received PIP (10 mg/kg.b.wt., p.o.) twice daily for a period of 4 days, 30 min before and 6 h after the 3-NP injection. Upon termination of treatment schedule, behavioral experiments were performed to access the behavioral outcomes. The brain striatal tissue was used for the estimation of monoamine oxidase activity and serotonin level. In addition, astrocytes activation was observed by GFAP immunostaining.Results: Our results showed that 3-NP induced behavioral impairments are attenuated by PIP co-treatment. Next, the extent of neuronal loss and astrocytes activation was reduced in the striatal brain region in PIP treated rats. Finally, it was observed that PIP alleviated the behavioral, biochemical, immunohistochemical and histological alterations.Conclusion: The results of the current study reveal the neuroprotective competency of PIP against Huntington disease like symptoms in rats.


Assuntos
Alcaloides/uso terapêutico , Benzodioxóis/uso terapêutico , Doença de Huntington/tratamento farmacológico , Transtornos Mentais/prevenção & controle , Fármacos Neuroprotetores , Nitrocompostos/administração & dosagem , Piperidinas/uso terapêutico , Alcamidas Poli-Insaturadas/uso terapêutico , Propionatos/administração & dosagem , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/química , Corpo Estriado/patologia , Modelos Animais de Doenças , Doença de Huntington/induzido quimicamente , Doença de Huntington/fisiopatologia , Masculino , Monoaminoxidase/análise , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Serotonina/análise
6.
Nutr Neurosci ; 25(9): 1898-1908, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33856270

RESUMO

BACKGROUND: Naringenin is a powerful antioxidant and anti-inflammatory flavonoid which has been widely used as a therapeutic agent in various toxic models. However, few studies have clearly discussed the neuromodulatory effects of naringenin against different neurodegenerative disorders. AIM: We investigated the neuroprotective efficacy of naringenin against 3-nitropropionic acid (3-NP)-induced neurobehavioral, biochemical and histopathological alterations in rats. METHODS: Albino Wistar rats were randomly divided into three experimental groups. Group 1, the vehicle administered group, received saline. Group 2 received 3-NP (20 mg/kg body weight, i.p.) for 4 consecutive days. Group 3 received naringenin (50 mg/kg body weight, p.o.) twice daily for a period of 4 days, 30 min before and 6 h after the 3-NP administration. On the 5th day, neurobehavioral experiments were performed to access the behavioral outcomes and the striatum tissue was used for analysis of the monoamine oxidase (MAO) activity and serotonin (5-HT) levels. In addition, astrocytes activation was observed by glial fibrillary acidic protein (GFAP) immunostaining. RESULTS: Our results showed that naringenin co-treatment provides neuroprotection against 3-NP-induced neurological disorders. Naringenin also increased the MAO activity and 5-HT levels in the striatum. Moreover, co-treatment with naringenin reduced the expression of GFAP protein in the striatal part and significantly attenuated the neuronal cell death. The findings of the present study suggest that naringenin provides neuroprotection and mitigates neurobehavioral alterations in experimental rats. CONCLUSION: The results show that co-treatment with naringenin ameliorates 3-NP-induced HD-like symptoms in rats.


Assuntos
Flavanonas , Doença de Huntington , Fármacos Neuroprotetores , Animais , Antioxidantes/uso terapêutico , Peso Corporal , Corpo Estriado , Modelos Animais de Doenças , Flavanonas/uso terapêutico , Proteína Glial Fibrilar Ácida/metabolismo , Doença de Huntington/induzido quimicamente , Doença de Huntington/tratamento farmacológico , Doença de Huntington/prevenção & controle , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia , Monoaminoxidase/uso terapêutico , Atividade Motora , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Nitrocompostos/toxicidade , Propionatos/toxicidade , Ratos , Ratos Wistar , Serotonina/metabolismo
7.
Int J Neurosci ; 132(5): 450-458, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32901525

RESUMO

BACKGROUND AND PURPOSE: Huntington disease (HD) is an autosomal dominant inheritance neurodegenerative disorder. 3-Nitropropanoic acid (3-NP) is a mitochondrial toxin that induces HD-like symptoms and thus serves as a good experimental model of HD. Chrysin (5, 7-dihydroxyflavone) is a natural flavonoid that have multiple biological activities. The present work was aimed to evaluate the neuroprotective efficacy of Chrysin in rat brain, under the influence of 3-NP treatment, by studying neurobehavioral and biochemical alterations alongwith histo-architectural changes. MATERIALS AND METHODS: Male Wistar rats (220-250 g) were used in the study and were divided into three groups following randomization. Each group comprised of nine animals. Group I animals served as control group and administered with normal saline (orally) as vehicle. Animals of Group II were treated with 3-NP for four successive days, at the dose of 20 mg/kg, intraperitoneally (i.p.). Animals that received Chrysin for the period of four consecutive days with the dose of 50 mg/kg, orally twice daily (30 min pre-treatment and 6 h post-treatment) following 3-NP administration served as Group III. After the treatment regime, animals were evaluated for neurobehavioral alterations and brain homogenates were used for estimation of neurotoxicity marker activity and neurotransmitter level along with histological assessment. RESULTS: The significant alteration in neurobehavioral, biochemical and neuronal structure in striatal part of brain was observed in the 3-NP administered (Group II) animals. It was observed that co-treatment of Chrysin with 3-NP treated rats the rotarod performance, grip strength, stride length as well as monoamine oxidase activity and serotonin levels were elevated. CONCLUSION: The results of this study reveal that Chrysin treatment alleviated the neurobehavioral, biochemical and histological alterations against HD symptoms in rats.


Assuntos
Doença de Huntington , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Animais , Flavonoides/farmacologia , Doença de Huntington/induzido quimicamente , Doença de Huntington/tratamento farmacológico , Masculino , Atividade Motora/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Nitrocompostos/uso terapêutico , Nitrocompostos/toxicidade , Estresse Oxidativo , Ratos , Ratos Wistar
8.
Cell Mol Neurobiol ; 41(4): 765-781, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32468441

RESUMO

Excessive mitochondrial fission has been implicated in the etiology of neuronal cell death in traumatic brain injury (TBI). In the present study, we examined the efficacy of melatonin (Mel) as a neuroprotective agent against TBI-induced oxidative damage and mitochondrial dysfunction. We assessed the impact of Mel post-treatment (10 mg/kg b.wt., i.p.) at different time intervals in TBI-subjected Wistar rats. We found that the Mel treatment significantly attenuated brain edema, oxidative damage, mitochondrial fission, and promoted mitochondrial fusion. Additionally, Mel-treated rats showed restoration of mitochondrial membrane potential and oxidative phosphorylation with a concomitant reduction in cytochrome-c release. Further, Mel treatment significantly inhibited the translocation of Bax and Drp1 proteins to mitochondria in TBI-subjected rats. The restorative role of Mel treatment in TBI rats was supported by the mitochondrial ultra-structural analysis, which showed activation of mitochondrial fusion mechanism. Mel enhanced mitochondrial biogenesis by upregulation of PGC-1α protein. Our results demonstrated the remedial role of Mel in ameliorating mitochondrial dysfunctions that are modulated in TBI-subjected rats and provided support for mitochondrial-mediated neuroprotection as a putative therapeutic agent in the brain trauma.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Melatonina/farmacologia , Mitocôndrias/metabolismo , Neuroproteção , Animais , Comportamento Animal/efeitos dos fármacos , Edema Encefálico/etiologia , Edema Encefálico/patologia , Lesões Encefálicas Traumáticas/complicações , Caspase 3/metabolismo , Citocromos c/metabolismo , Dinaminas/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neuroproteção/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Wistar , Proteína X Associada a bcl-2/metabolismo
9.
J Microencapsul ; 35(7-8): 643-656, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30669915

RESUMO

Nigella sativa L. belonging to Ranunculaceae family is an important medicinal spice which has been utilised to treat various chronic diseases. Lipid nanoemulsions containing oil from medicinal plants have shown to enhance drug dissolvability, diminish symptoms of different powerful medications and enhance the bioavailability of medications, in contrast with conventional formulations. In the present study, aqueous titration method was used to prepare nanoemulsion. The optimised formulation (NE11) with the mean particle size of 37.47 nm showed a minimum viscosity of 0.547 cps and maximum drug release (98.2%) in 24 h. The stability study showed considerably stable formulations at refrigerator temperature as compared to room temperature. The cancer cell line studies confirmed that 5d sprout extract of N. sativa nanoemulsion reduced the cell viability (p < .05) and increased colony formation, ROS intensity and chromatin condensation. All data such as colony formation, ROS intensity and chromatin condensation are represented as mean ± SD (p < .001) treated cells for 48 hours. Our results concluded that the development of nanoemulsion could be an efficient carrier for drug delivery.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Ranunculaceae/química , Antineoplásicos Fitogênicos/administração & dosagem , Carcinoma Hepatocelular/patologia , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Emulsões/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Tamanho da Partícula , Veículos Farmacêuticos/química , Sementes/química , Solubilidade
10.
Appl Microbiol Biotechnol ; 99(12): 5281-93, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25620364

RESUMO

A bench scale system consisting of an up-flow packed bed bioreactor (UAPBR) made of polyurethane foam was used for the treatment and regeneration of aqueous solution of ferrous-NTA scrubbed with nitric oxide (NO). The biomass in the UAPBR was sequentially acclimatized under denitrifying and iron reducing conditions using ethanol as electron donor, after which nitric oxide (NO) gas was loaded continuously to the system by absorption. The system was investigated for different parameters viz. pH, removal efficiency of nitric oxide, biological reduction efficiency of Fe(II)NTA-NO and COD utilization. The Fe(II)NTA-NO reduction efficiency reached 87.8 % at a loading rate of 0.24 mmol L(-1) h(-1), while the scrubber efficiency reached more than 75 % with 250 ppm NO. Stover-Kincannon and a Plug-flow kinetic model based on Michaelis-Menten equation were used to describe the UAPBR performance with respect to Fe(II)NTA-NO and COD removal. The Stover-Kincannon model was found capable of describing the Fe(II)NTA-NO reduction (R m = 8.92 mM h(-1) and K NO = 11.46 mM h(-1)) while plug-flow model provided better fit to the COD utilization (U m = 66.62 mg L(-1) h(-1), K COD = 7.28 mg L(-1)). Analyses for pH, Fe(III)NTA, ammonium, nitrite concentration, and FTIR analysis of the medium samples indicated degradation of NTA, which leads to ammonium and nitrite accumulation in the medium, and affect the regeneration process.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Recuperação e Remediação Ambiental/métodos , Compostos Ferrosos/metabolismo , Óxido Nítrico/metabolismo , Ácido Nitrilotriacético/metabolismo , Anaerobiose , Biodegradação Ambiental , Recuperação e Remediação Ambiental/instrumentação , Compostos Ferrosos/química , Cinética , Óxido Nítrico/química , Ácido Nitrilotriacético/química
11.
Drug Chem Toxicol ; 38(4): 452-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25678195

RESUMO

CONTEXT: Chemotherapy has long been the keystone of cancer regimen, and comprehensive research has been done on the development of more potent and less toxic anti-cancer agents. Cisplatin (CP) is a potent and extensively used chemotherapeutic agent. There is paucity of literature involving role of mitochondria in mediating CP-induced hepatic toxicity, and its underlying mechanism remains unclear. Oxidative stress is a well-established biomarker of the mitochondrial toxicity. OBJECTIVE: This study evaluates the dose-dependent effects of CP-induced mitotoxicity under in vitro conditions, using mitochondria from rat liver. MATERIALS AND METHODS: The aim of our study was to determine the effect of CP with different concentrations in isolated liver mitochondria as an in vitro model. RESULTS: CP exposure showed significantly compromised level of non enzymatic and enzymatic antioxidants with higher extent of lipid and protein oxidation. CP also caused significant alterations in the activity of respiratory chain enzymes (complex I-III and V) in liver mitochondria. DISCUSSION AND CONCLUSION: It is suggested that mitochondria can be employed as a model for future investigations of anticancer drug-induced hepatotoxicity under in vitro conditions. Studies with selected pharmaceuticals and nutraceuticals might certainly play a definite role in deciphering cellular and molecular mechanisms of CP-induced hepatotoxicity and its amelioration.


Assuntos
Antineoplásicos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Cisplatino/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cisplatino/administração & dosagem , Relação Dose-Resposta a Droga , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
12.
Biochem Pharmacol ; 224: 116244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685280

RESUMO

Traumatic brain injury (TBI) triggers a bevy of changes including mitochondrial dysfunction, apoptosis, oxidative stress, neurobehavioural impairment, and neuroinflammation, among others. Dantrolene (DNT), a muscle relaxant which inhibits intracellular Ca2+ signaling from the ER, has been repurposed as a potential neuroprotective agent in various neurological diseases. However, there have been limited studies on whether it can mitigate TBI-induced deficits and restore impaired mitochondrial dynamics. This study sought to evaluate whether Dantrolene can potentially provide neuroprotection in an in vivo model of TBI. Male wistar rats subjected to TBI were treated with DNT (10 mg/kg) 1 h and 12 h post surgery. Animals were assessed 24 h post-TBI to evaluate neurobehavioural deficits and cerebral edema. We evaluated the protein expressions of apoptotic, autophagic, and neuroinflammatory markers by immunoblotting, as well as Mitochondrial Membrane Potential (MMP) and Reactive Oxygen Species (ROS) via Flow Cytometry to ascertain the effects of DNT on TBI. We further analysed immunofluorescence staining with Glial Fibrillary Acidic Protein (GFAP) and immunohistochemistry with NF-κß to investigate neuroinflammation. H&E staining was also performed post-TBI. Our findings revealed DNT administration inhibits mitochondria-mediated apoptotis and reduces heightened oxidative stress. DNT treatment was also found to reverse neurobehavioural impairments and offer neuroprotection by preserving neuronal architechture. We also demonstrated that DNT inhibits neuronal autophagy and alleviates neuroinflammation following TBI by modulating the NF-κß/Akt signaling pathway. Thus, our results suggest a novel application of DNT in ameliorating the multitude of deficits induced by TBI, thereby conferring neuroprotection.


Assuntos
Lesões Encefálicas Traumáticas , Dantroleno , Mitocôndrias , NF-kappa B , Doenças Neuroinflamatórias , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Animais , Dantroleno/farmacologia , Dantroleno/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Masculino , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , NF-kappa B/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Relaxantes Musculares Centrais/farmacologia , Relaxantes Musculares Centrais/uso terapêutico
13.
J Biomol Struct Dyn ; : 1-15, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288958

RESUMO

The sudden outbreak of the COVID-19 pandemic has currently taken approximately 2.4 million lives, with no specific medication and fast-tracked tested vaccines for prevention. These vaccines have their own adverse effects, which have severely affected the global healthcare system. The discovery of the main protease structure of coronavirus (Mpro/Clpro) has resulted in the identification of compounds having antiviral potential, especially from the herbal system. In this study, the computer-associated drug design tools were utilised to analyze the reported phytoconstituents of Nigella sativa for their antiviral activity against the main protease. Fifty-eight compounds were subjected to pharmacological parameter analysis to determine their lead likeness in comparison to the standard drugs (chloroquine and nirmatrelvir) used in the treatment of SARS-CoV-2. Nearly 31 compounds were docked against five different SARS-CoV-2 main proteases, and all compounds showed better binding affinity and inhibition constant against the proteases. However, dithymoquinone and campesterol displayed the best binding scores and hence were further subjected to dynamics and MMPBSA study for 100 ns. The stability analysis shows that dithymoquinone and campesterol show less variation in fluctuation in residues compared to standard complexes. Moreover, dithymoquinone exhibited higher binding affinity and favorable interaction followed by campesterol as compared to the standard drug. The in silico computational analysis provides a promising hit for regulating the main proteases activity.Communicated by Ramaswamy H. Sarma.

14.
Mol Neurobiol ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789895

RESUMO

AT1 receptor blockers (ARBs) are commonly used drugs to treat cardiovascular disease and hypertension, but research on their impact on brain disorders is unattainable. Valsartan (VAL) is a drug that specifically blocks AT1 receptor. Despite the previous evidence for VAL to provide neuroprotection in case of ischemic reperfusion injury, evaluation of their potential in mitigating mitochondrial dysfunction that causes neuronal cell death and neurobehavioral impairment remains unknown. The aim of this study was to evaluate the therapeutic effect of repurposed drug VAL against ischemic reperfusion injury-induced neuronal alternation. tMCAO surgery was performed to induce focal cerebral ischemic reperfusion injury. Following ischemic reperfusion injury, we analyzed the therapeutic efficacy of VAL by measuring the infarct volume, brain water content, mitochondrial oxidative stress, mitochondrial membrane potential, histopathological architecture, and apoptotic marker protein. Our results showed that VAL administrations (5 and 10 mg/kg b.wt.) mitigated the brain damage, enhanced neurobehavioral outcomes, and alleviated mitochondrial-mediated oxidative damage. In addition to this, our findings demonstrated that VAL administration inhibits neuronal apoptosis by restoring the mitochondrial membrane potential. A follow-up investigation demonstrated that VAL induces BDNF expression and promoted ischemic tolerance via modulating the Akt/p-Creb signaling pathway. In summary, our results suggested that VAL administration provided neuroprotection, ameliorated mitochondrial dysfunction, preserved the integrity of neurons, and lead to functional improvement after ischemic reperfusion injury.

15.
Hippocampus ; 23(12): 1291-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23836535

RESUMO

Hippocampal long-term potentiation (LTP) is a cellular model of learning and memory. An early form of LTP (E-LTP) can be reinforced into its late form (L-LTP) by various behavioral interactions within a specific time window ("behavioral LTP-reinforcement"). Depending on the type and procedure used, various studies have shown that stress differentially affects synaptic plasticity. Under low stress, such as novelty detection or mild foot shocks, E-LTP can be transformed into L-LTP in the rat dentate gyrus (DG). A reinforcing effect of a 2-min swim, however, has only been shown in (Korz and Frey (2003) J Neurosci 23:7281-7287; Korz and Frey (2005) J Neurosci 25:7393-7400; Ahmed et al. (2006) J Neurosci 26:3951-3958; Sajikumar et al., (2007) J Physiol 584.2:389-400) so far. We have reinvestigated these studies using the same as well as an improved recording technique which allowed the recording of field excitatory postsynaptic potentials (fEPSP) and the population spike amplitude (PSA) at their places of generation in freely moving rats. We show that acute swim stress led to a long-term depression (LTD) in baseline values of PSA and partially fEPSP. In contrast to earlier studies a LTP-reinforcement by swimming could never be reproduced. Our results indicate that 2-min swim stress influenced synaptic potentials as well as E-LTP negatively.


Assuntos
Hipocampo/patologia , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Estresse Psicológico/patologia , Natação/psicologia , Vigília/fisiologia , Análise de Variância , Animais , Corticosterona/sangue , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Ratos , Ratos Wistar , Estresse Psicológico/sangue , Estresse Psicológico/fisiopatologia , Fatores de Tempo
16.
Life Sci ; 314: 121352, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592789

RESUMO

Traumatic brain injury (TBI), an acquired brain injury imparted by a mechanical trauma to the head, has significant ramifications in terms of long-term disability and cost of healthcare. TBI is characterized by an initial phase of cell death owing to direct mechanical injury, followed by a secondary phase in which neuroinflammation plays a pivotal role. Activation of inflammasome complexes triggers a cascade that leads to activation of inflammatory mediators such as caspase-1, Interleukin (IL)-18, and IL-1ß, eventually causing pyroptosis. NLRP3 inflammasome, a component of the innate immune response, has been implicated in a number of neurodegenerative diseases, including TBI. Recent findings indicate that NLRP3 inhibitors can potentially ameliorate neuroinflammation and improve cognition and motor function in TBI. The NLRP3 inflammasome also holds potential as a predictive biomarker for the long-term sequelae following TBI. Although several therapeutic agents have shown promising results in pre-clinical studies, none of them have been effective in human trials for TBI, to date. Thus, it is imperative that such promising therapeutic candidates are evaluated in clinical trials to assess their efficacy in alleviating neurological impairments in TBI. This review offers an insight into the pathophysiology of TBI, with an emphasis on neuroinflammation in the aftermath of TBI. We highlight the NLRP3 inflammasome and explore its role in the neuroinflammatory cascade in TBI. We also shed light on its potential as a prospective biomarker and therapeutic target for TBI management.


Assuntos
Lesões Encefálicas Traumáticas , Inflamassomos , Humanos , Biomarcadores , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
17.
Ibrain ; 9(1): 111-123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786518

RESUMO

Nigella sativa L., also known as black seed or black cumin, is a plant that has been used for centuries. In the past, this flowering plant was used as a food preservative and medicinal herb. A vital component of Nigella sativa, thymoquinone (TQ), plays a significant therapeutic role in the management of most diseases, including cancer, diabetes mellitus, hypertension, inflammation, gastrointestinal disorders, and neurodegenerative disorders. Neurodegenerative disorders are primarily caused by neurotransmitter hypoactivity, particularly insufficient serotonin activity. It has been discovered that many medicinal herbs and their active compounds have therapeutic value. Black cumin seeds have been used to heal ailments and its history traces back to ancient times such as ancient Babylonia. They can be used applied to alleviate edema, hair loss, and bruising, and consumd to treat stomach issues. It is one of the most feasible and effective medicinal plants. The use of nanoformulations based on Nigella sativa and TQ to treat neurodegenerative diseases (NDs) has yielded promising outcomes. Customized administration of nanoparticle (NP) systems and nanomedicine are two of the many options for drug delivery to the central nervous system (CNS) that are attracting increasing interest. Delivering a therapeutic and diagnostic substance to a particular location is the core target of NPs. Because of their distinct cell uptake and trafficking mechanisms, NPs can reduce the amount that accumulates in undesirable organs. The focus of the current review is on recent studies on the various neuroprotective properties of Nigella sativa as well as nanoformulations for NDs and the brain's uptake of NPs. The review summarizes the In vivo, In vitro, and In silico studies on the protective effects of black cumin against neurodegenerative disorders.

18.
Aging Med (Milton) ; 6(1): 82-97, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911087

RESUMO

Neurodegenerative illnesses refer to the gradual, cumulative loss of neural activity. Neurological conditions are considered to be the second leading cause of mortality in the modern world and the two most prevalent ones are Parkinson's disease and Alzheimer's disease. The negative side effects of pharmaceutical use are a major global concern, despite the availability of many different treatments for therapy. We concentrated on different types of neurological problems and their influence on targets, in vitro, in vivo, and in silico methods toward neurological disorders, as well as the molecular approaches influencing the same, in the first half of the review. The bulk of the second half of the review focuses on the many categories of treatment possibilities, including natural and artificial. Nevertheless, herbal treatment solutions are piquing scholarly attention due to their anti-oxidative properties and accessibility. However, more quality investigations and innovations are undoubtedly needed to back up these conclusions.

19.
Plasmonics ; 18(3): 955-969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229148

RESUMO

The major challenge in today's world is that medical research is facing the existence of a vast number of viruses and their mutations, which from time to time cause outbreaks. Also, the continuous and spontaneous mutations occurring in the viruses and the emergence of resistant virus strains have become serious medical hazards. So, in view of the growing number of diseases, like the recent COVID-19 pandemic that has caused the deaths of millions of people, there is a need to improve rapid and sensitive diagnostic strategies to initiate timely treatment for such conditions. In the cases like COVID-19, where a real cure due to erratic and ambiguous signs is not available, early intervention can be life-saving. In the biomedical and pharmaceutical industries, nanotechnology has evolved exponentially and can overcome multiple obstacles in the treatment and diagnosis of diseases. Nanotechnology has developed exponentially in the biomedical and pharmaceutical fields and can overcome numerous challenges in the treatment and diagnosis of diseases. At the nano stage, the molecular properties of materials such as gold, silver, carbon, silica, and polymers get altered and can be used for the creation of reliable and accurate diagnostic techniques. This review provides insight into numerous diagnostic approaches focused on nanoparticles that could have been established for quick and early detection of such diseases.

20.
ACS Omega ; 8(8): 7279-7288, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872990

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder; however, its etiology remains elusive. Antioxidants are considered to be a promising approach for decelerating neurodegenerative disease progression owing to extensive examination of the relationship between oxidative stress and neurodegenerative diseases. In this study, we investigated the therapeutic effect of melatonin against rotenone-induced toxicity in the Drosophila model of PD. The 3-5 day old flies were divided into four groups: control, melatonin alone, melatonin and rotenone, and rotenone alone groups. According to their respective groups, flies were exposed to a diet containing rotenone and melatonin for 7 days. We found that melatonin significantly reduced the mortality and climbing ability of Drosophila because of its antioxidative potency. It alleviated the expression of Bcl 2, tyrosine hydroxylase (TH), NADH dehydrogenase, mitochondrial membrane potential, and mitochondrial bioenergetics and decreased caspase 3 expression in the Drosophila model of rotenone-induced PD-like symptoms. These results indicate the neuromodulatory effect of melatonin, and that it is likely modulated against rotenone-induced neurotoxicity by suppressing oxidative stress and mitochondrial dysfunctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA