Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Biol Rep ; 48(2): 1589-1599, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33512627

RESUMO

Nuclear Factor Y (NF-Y) gene family regulates numbers of flowering processes. Two independent transgenic Arabidopsis lines overexpressing (OX) GmNFY-B1 and GmNFYB1-GR (GmNFYB1 fused with the glucocorticoid receptor) were used to investigate the function of NFY-B1 in flowering. Furthermore, GmNFYB1-GR lines were chemically treated with dexamethasone (Dex, synthetic steroid hormone), cycloheximide (Cyc, an inhibitor of protein biosynthesis), and ethanol to examine their effects on different flowering related marker genes. Our results indicated that the transgenic lines produced longer hypocotyl lengths and had fewer numbers of rosette leaves compared to the wild-type and nf-yb1 mutant plants under both long and short-day (LD and SD) conditions. The qRT-PCR assays revealed that transcript levels of all flowering time regulating genes, i.e. SOC, FLC, FT, TSF, LFY, GI2, AGL, and FCA showed higher transcript abundance in lines OX GmNFYB1-GR. However, FT and GI genes showed higher transcript levels under Dex and Dex/Cyc treatments compared to Cyc and ethanol. Additionally, 24 differentially expressed genes were identified and verified through RNA-seq and RT-qPCR in GmNF-YB1-GR lines under Cyc and Dex/Cyc treatments from which 14 genes were up-regulated and 10 were down-regulated. These genes are involved in regulatory functions of circadian rhythm, regulation of flower development in photoperiodic, and GA pathways. The overexpression of GmNF-YB1 and GmNF-YB1-GR promote flowering through the higher expression of flowering-related genes. Further GmNF-YB1 and its attachment with the GR receptor can regulate its target genes under Dex/Cyc treatment and might act as flowering inducer under LD and SD conditions.


Assuntos
Fator de Ligação a CCAAT/genética , Flores/genética , Glycine max/genética , Proteínas de Soja/genética , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Fatores de Transcrição/genética
2.
Int J Mol Sci ; 20(19)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569432

RESUMO

Lactoferrin (LF) has demonstrated stimulation of osteogenic differentiation of mesenchymal stem cells (MSCs). Long non-coding RNAs (lncRNAs) participate in regulating the osteogenic differentiation processes. However, the impact of LF on lncRNA expression in MSC osteogenic differentiation is poorly understood. Our aim was to investigate the effects of LF on lncRNAs expression profiles, during osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs), by RNA sequencing. A total number of 1331 putative lncRNAs were identified in rBMSCs during osteogenic differentiation in the study. LF influenced the expression of 120 lncRNAs (differentially expressed lncRNAs [DELs], Fold change > 1.5 or < -1.5; p < 0.05) in rBMSCs on day 14 of osteogenic differentiation, consisted of 60 upregulated and 60 down-regulated. Furthermore, the potential functions of DELs were of prediction by searching their target cis- and trans-regulated protein-coding genes. The bioinformatic analysis of DELs target gene revealed that LF led to the disfunction of transforming growth factor beta stimulus (TGF-ß) and positive regulation of I-κappa B kinase/NF-κappa B signaling pathway, which may relate to osteogenic differentiation of rBMSCs. Our work is the first profiling of lncRNA in osteogenic differentiation of rBMSCs induced by LF, and provides valuable insights into the potential mechanisms for LF promoting osteogenic activity.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Lactoferrina/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , RNA Longo não Codificante/genética , Ontologia Genética , Humanos
3.
Molecules ; 24(1)2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30609730

RESUMO

The intestinal epithelial barrier plays a key protective role in the gut lumen. Bovine lactoferrin (bLF) has been reported to improve the intestinal epithelial barrier function, but its impact on tight junction (TJ) proteins has been rarely described. Human intestinal epithelial crypt cells (HIECs) were more similar to those in the human small intestine, compared with the well-established Caco-2 cells. Accordingly, both HIECs and Caco-2 cells were investigated in this study to determine the effects of bioactive protein bLF on their growth promotion and intestinal barrier function. The results showed that bLF promoted cell growth and arrested cell-cycle progression at the G2/M-phase. Moreover, bLF decreased paracellular permeability and increased alkaline phosphatase activity and transepithelial electrical resistance, strengthening barrier function. Immunofluorescence, western blot and quantitative real-time polymerase chain reaction revealed that bLF significantly increased the expression of three tight junction proteins-claudin-1, occludin, and ZO-1-at both the mRNA and protein levels, and consequently strengthened the barrier function of the two cell models. bLF in general showed higher activity in Caco-2 cells, however, HIECs also exhibited desired responses to barrier function. Therefore, bLF may be incorporated into functional foods for treatment of inflammatory bowel diseases which are caused by loss of barrier integrity.


Assuntos
Fármacos Gastrointestinais/farmacologia , Absorção Intestinal/efeitos dos fármacos , Lactoferrina/farmacologia , Proteínas de Junções Íntimas/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Células CACO-2 , Bovinos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Permeabilidade , Junções Íntimas/metabolismo
4.
Nat Prod Res ; 37(6): 996-1001, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35815672

RESUMO

Honey is known to have antimicrobial, immunomodulatory and wound healing properties. The biological properties of honey have been attributed to phytochemicals derived from their source plants and research has focused on identifying the bioactive phytochemicals with therapeutic potential. In this study, we determined the ability of 5 honeys from Kazakhstan and manuka honey to stimulate TNF-α and TGF-ß production by human keratinocytes. TNF-α and TGF-ß levels increased over time in honey treated and untreated keratinocytes, whereas cells treated with sugar solutions that matched those of the honeys had reduced levels of both cytokines. This suggests that the non-sugar phytochemical components of the honeys may have prevented this decrease. Analysis by LC-MS confirmed that the honeys contained a diverse range of phytochemicals. Some phytochemicals e.g. pinobanksin and vanillin were present at different levels across the honey types, whereas other components, e.g. dicarboxylic acids and their glycosides, were abundant in all honeys.


Assuntos
Mel , Humanos , Mel/análise , Fator de Necrose Tumoral alfa , Cazaquistão , Compostos Fitoquímicos/farmacologia , Fator de Crescimento Transformador beta
5.
J Agric Food Chem ; 69(25): 7115-7126, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34152762

RESUMO

Microbiomes can greatly affect the quality of fermented food and beverages, including tea. In this study, microbial populations were characterized during black and green tea manufacturing, revealing that tea processing steps can drive both the bacterial and fungal community structure. Tea leaves were found to mostly harbor Proteobacteria, Bacteriodetes, Firmicutes, and Actinobacteria among bacteria and Ascomycetes among fungi. During processing, tea microbial populations changed especially between sterilized and unsterilized samples. The surface sterilization of fresh leaves before processing can remove many microbes, especially the bacteria of the genera Sphingomonas and Methylobacteria, indicating that these are mostly phylloplane microbes on tea leaves. The surface sterilization removed most fungi, except the Debaryomyces. We also observed a fluctuation in the content of several tea quality-related metabolites during processing. Caffeine and theanine were found in the same quantities in green tea with or without leaf surface sterilization. However, the sterilization process dramatically decreased the content of total catechins and theanine in black tea, indicating that microbes on the surface of tea leaf may be involved in maintaining the formation of these important metabolites during black tea processing.


Assuntos
Camellia sinensis , Catequina , Microbiota , Catequina/análise , Folhas de Planta/química , Chá
6.
Clin Cosmet Investig Dermatol ; 13: 875-888, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262630

RESUMO

Topical application of medical grade honey is recommended for the clinical management of wound infections. The suitability of honey as a wound healing agent is largely due to its antibacterial activity, immune modulatory properties, and biocompatibility. Despite the usefulness of honey in wound healing, chronic wound infections continue to be a global problem requiring new and improved therapeutic interventions. Several recent studies have investigated the effects of combining honey with other therapies or agents with the aim of finding more efficacious treatments. In this systematic review, the database PubMed was used to carry out a search of the scientific literature on the combined effects of honey and other therapies on antimicrobial activity and wound and skin healing. The search revealed that synergistic or additive antimicrobial effects were observed in vitro when honey was combined with antibiotics, bacteriophages, antimicrobial peptides, natural agents, eg, ginger or propolis and other treatment approaches such as the use of chitosan hydrogel. Outcomes depended on the type of honey, the combining agent or treatment and the microbial species or strain. Improved wound healing was also observed in vivo in mice when honey was combined with laser therapy or bacteriophage therapy. More clinical studies in humans are required to fully understand the effectiveness of honey combination therapies for the treatment of skin and wound infections.

7.
Nutrients ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316396

RESUMO

Lactoferrin (LF) exerts a promoting bone health function. The effects of LF on bone formation at the metabolic level have been less explored. Urinary metabolic profiling of growing Sprague-Dawley (SD) rats LF-supplemented (1000 mg/kg bw) for four weeks were explored by Liquid chromatography-tandem mass spectrometry (LC-MS/MS). The serum markers of bone formation and bone resorption, the bone mass, and the osteogenesis markers of femur were measured by an enzyme-linked immunosorbent assay, micro-computerized tomography, and immunohistochemistry, respectively. Compared with the control, LF supplementation improved bone formation (p < 0.05), reduced bone resorption (p < 0.05), enhanced femoral bone mineral density and microarchitecture (p < 0.05), and upregulated osteocalcin, osterix, and Runx-2 expression (p < 0.05) of femur. LF upregulated 69 urinary metabolites. KEGG and pathway enrichment analyses of those urinary metabolites, and the Person's correlation analyses among those urinary metabolites and bone status revealed that LF impacted on bone formation via regulatory comprehensive pathways including taurine and hypotaurine metabolism, arginine and proline metabolism, cyanoamino acid metabolism, nitrogen metabolism, nicotinate and nicotinamide metabolism, and fatty acid biosynthesis. The present study indicated the metabolomics is a useful and practical tool to elucidate the mechanisms by which LF augments bone mass formation in growing animals.


Assuntos
Suplementos Nutricionais , Lactoferrina/administração & dosagem , Lactoferrina/farmacologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Ratos Sprague-Dawley/crescimento & desenvolvimento , Animais , Arginina/metabolismo , Arginina/urina , Biomarcadores/metabolismo , Biomarcadores/urina , Cromatografia Líquida , Masculino , Metabolômica/métodos , Nitrogênio/metabolismo , Nitrogênio/urina , Prolina/metabolismo , Prolina/urina , Espectrometria de Massas em Tandem , Taurina/análogos & derivados , Taurina/metabolismo , Taurina/urina
8.
Plant Physiol Biochem ; 119: 9-20, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28841544

RESUMO

The N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) superfamily, specifically the SNAP25-type proteins and t-SNAREs, have been proposed to regulate cellular processes and plant resistance mechanisms. However, little is known about the role of SNAP25-type proteins in combating abiotic stresses, specifically in wild soybean. In the current study, the isolation and functional characterization of the putative synaptosomal-associated SNAP25-type protein gene GsSNAP33 from wild soybean (Glycine soja) were performed. GsSNAP33 has a molecular weight of 33,311 Da and comprises 300 amino acid residues along with Qb-Qc SNARE domains. Multiple sequence alignment revealed the highest similarity of the GsSNAP33 protein to GmSNAP33 (91%), VrSNAP33 (89%), PvSNAP33 (86%) and AtSNAP33 (63%). Phylogenetic studies revealed the abundance of SNAP33 proteins mostly in dicotyledons. Quantitative real-time PCR assays confirmed that GsSNAP33 expression can be induced by salt, alkali, ABA and PEG treatments and that GsSNAP33 is highly expressed in the pods, seeds and roots of Glycine soja. Furthermore, the overexpression of the GsSNAP33 gene in WT Arabidopsis thaliana resulted in increased germination rates, greater root lengths, improved photosynthesis, lower electrolyte leakage, higher biomass production and up-regulated expression levels of various stress-responsive marker genes, including KINI, COR15A, P5Cs, RAB18, RD29A and COR47 in transgenic lines compared with those in WT lines. Subcellular localization studies revealed that the GsSNAP33-eGFP fusion protein was localized to the plasma membrane, while eGFP was distributed throughout whole cytoplasm of onion epidermal cells. Collectively, our findings suggest that GsSNAP33, a novel plasma membrane protein gene of Glycine soja, might be involved in improving plant responses to salt and drought stresses in Arabidopsis.


Assuntos
Arabidopsis , Desidratação , Glycine max/genética , Pressão Osmótica , Proteínas de Plantas , Plantas Geneticamente Modificadas , Proteínas Qb-SNARE , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Desidratação/genética , Desidratação/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Qb-SNARE/biossíntese , Proteínas Qb-SNARE/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA