Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 23(4): 045302, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22214840

RESUMO

The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe.

2.
Micron ; 121: 53-65, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30947034

RESUMO

We introduce laser-assisted Time-Resolved SEM (TR-SEM), joining Scanning Electron Microscopy and laser light excitation, to probe the long-term temporal evolution of optically excited charge distributions at the surface of Metal Ammonium Lead Triiodide (MAPbI3) hybrid perovskite thin films. Laser-assisted TR-SEM relies on the optically induced local modification of Secondary Electron (SE) detection yield to provide mapping of photoexcited potentials and charge dynamics at surfaces, and qualifies as a complementary approach to near-field probe microscopies and nonlinear photoemission spectroscopies for photovoltage measurements. Real-time imaging of evolving field patterns are provided on timescales compatible with SEM scanning rates, so that temporal resolution in the millisecond range can be ultimately envisaged. MAPbI3 is an outstanding light-sensitive material candidate for applications in solar light harvesting and photovoltaics, also appealing as an active system for light generation. In this work, the real time temporal evolution of optically induced SE contrast patterns in MAPbI3 is experimentally recorded, both under illumination by a 405 nm blue laser and after light removal, showing the occurrence of modifications related to photoinduced positive charge fields at surface. The long term evolution of these surface fields are tentatively attributed to ion migration within the film, under the action of the illumination gradient and the hole collecting substrate. This optical excitation is fully reversible in MAPbI3 over timescales of hours and a complete recovery of the system occurs within days. Permanent irradiation damage of the material is avoided by operating the SEM at 5 keV of energy and 1-10 pA of primary current. Optical excitation is provided by intense above-bandgap illumination (up to 50 W/cm2). TR-SEM patterns show a strong dependence on the geometry of SE collection. Measurements are taken at different axial orientations of the sample with respect to the entrance of the in-column detection system of the SEM and compared with numerical modeling of the SE detection process. This enables to single out the information regarding the local potential distribution. Results are interpreted by combining data about the spectral distribution of emitted SEs with the configuration of the electric and magnetic fields in the specimen chamber. The present modeling sets a robust basis for the understanding of photoinduced SE electron contrast.

3.
Ultramicroscopy ; 187: 93-97, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29427914

RESUMO

The excitation dynamics of defects in insulators plays a central role in a variety of fields from Electronics and Photonics to Quantum computing. We report here a time-resolved measurement of electron dynamics in 100 nm film of aluminum oxide on silicon by Ultrafast Scanning Electron Microscopy (USEM). In our pump-probe setup, an UV femtosecond laser excitation pulse and a delayed picosecond electron probe pulse are spatially overlapped on the sample, triggering Secondary Electrons (SE) emission to the detector. The zero of the pump-probe delay and the time resolution were determined by measuring the dynamics of laser-induced SE contrast on silicon. We observed fast dynamics with components ranging from tens of picoseconds to few nanoseconds, that fits within the timescales typical of the UV color center evolution. The surface sensitivity of SE detection gives to the USEM the potential of applying pump-probe investigations to charge dynamics at surfaces and interfaces of current nano-devices. The present work demonstrates this approach on large gap insulator surfaces.

4.
J Craniomaxillofac Surg ; 46(8): 1258-1262, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30056860

RESUMO

Orbital reconstruction in cases of trauma is usually performed using the unaffected side orbital volume as a reference, but this measurement does not fully consider the anatomical characteristics of orbital surfaces. We propose a novel procedure based on the registration of 3D orbital segmented surfaces. Reconstructed orbits from 20 patients and healthy orbits from 13 control subjects were segmented from the post-operative CT-scans. The 3D orbital model from the unaffected orbit was "mirrored" according to the sagittal plane and superimposed onto the reconstructed one, with calculation of volumes, asymmetry index and point-to-point RMS (root mean square) distances. Inter- and intra-observer errors were tested through Bland-Altman plot. Differences in volume, asymmetry index and RMS value between the control group and the treated patients were assessed through two-way ANOVA and Student's t-test (p < 0.05). According to Bland-Altman test, intra- and inter-operator repeatability was respectively 87% and 89%. No significant differences in volume or asymmetry index between the control group and the treated patients were observed (p > 0.05), but the RMS value was significantly larger in the latter ones (on average, 0.90 ± 0.26 mm vs. 0.67 ± 0.17 mm, p < 0.05). Results show that the reconstructed orbits present a morphologically different surface from the unaffected ones.


Assuntos
Órbita/cirurgia , Fraturas Orbitárias/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Adulto , Idoso , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Órbita/diagnóstico por imagem , Órbita/patologia , Fraturas Orbitárias/diagnóstico por imagem , Fraturas Orbitárias/patologia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Adulto Jovem
5.
Nanoscale Res Lett ; 5(12): 1921-1925, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21170398

RESUMO

The ordered growth of self-assembled SiGe islands by surface thermal diffusion in ultra high vacuum from a lithographically etched Ge stripe on pit-patterned Si(100) surface has been experimentally investigated. The total surface coverage of Ge strongly depends on the distance from the source stripe, as quantitatively verified by Scanning Auger Microscopy. The size distribution of the islands as a function of the Ge coverage has been studied by coupling atomic force microscopy scans with Auger spectro-microscopy data. Our observations are consistent with a physical scenario where island positioning is essentially driven by energetic factors, which predominate with respect to the local kinetics of diffusion, and the growth evolution mainly depends on the local density of Ge atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA