Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781445

RESUMO

Six new organotin(IV) compounds of Schiff bases derived from S-R-dithiocarbazate [R = benzyl (B), 2- or 4-methylbenzyl (2M and 4M, respectively)] condensed with 2-hydroxy-3-methoxybenzaldehyde (oVa) were synthesised and characterised by elemental analysis, various spectroscopic techniques including infrared, UV-vis, multinuclear (¹H, 13C, 119Sn) NMR and mass spectrometry, and single crystal X-ray diffraction. The organotin(IV) compounds were synthesised from the reaction of Ph2SnCl2 or Me2SnCl2 with the Schiff bases (S2MoVaH/S4MoVaH/SBoVaH) to form a total of six new organotin(IV) compounds that had a general formula of [R2Sn(L)] (where L = Schiff base; R = Ph or Me). The molecular geometries of Me2Sn(S2MoVa), Me2Sn(S4MoVa) and Me2Sn(SBoVa) were established by X-ray crystallography and verified using density functional theory calculations. Interestingly, each experimental structure contained two independent but chemically similar molecules in the crystallographic asymmetric unit. The coordination geometry for each molecule was defined by thiolate-sulphur, phenoxide-oxygen and imine-nitrogen atoms derived from a dinegative, tridentate dithiocarbazate ligand with the remaining positions occupied by the methyl-carbon atoms of the organo groups. In each case, the resulting five-coordinate C2NOS geometry was almost exactly intermediate between ideal trigonal-bipyramidal and square-pyramidal geometries. The cytotoxic activities of the Schiff bases and organotin(IV) compounds were investigated against EJ-28 and RT-112 (bladder), HT29 (colon), U87 and SJ-G2 (glioblastoma), MCF-7 (breast) A2780 (ovarian), H460 (lung), A431 (skin), DU145 (prostate), BE2-C (neuroblastoma) and MIA (pancreatic) cancer cell lines and one normal breast cell line (MCF-10A). Diphenyltin(IV) compounds exhibited greater potency than either the Schiff bases or the respective dimethyltin(IV) compounds. Mechanistic studies on the action of these compounds against bladder cancer cells revealed that they induced the production of reactive oxygen species (ROS). The bladder cancer cells were apoptotic after 24 h post-treatment with the diphenyltin(IV) compounds. The interactions of the organotin(IV) compounds with calf thymus DNA (CT-DNA) were experimentally explored using UV-vis absorption spectroscopy. This study revealed that the organotin(IV) compounds have strong DNA binding affinity, verified via molecular docking simulations, which suggests that these organotin(IV) compounds interact with DNA via groove-binding interactions.


Assuntos
Benzaldeídos/síntese química , Benzaldeídos/farmacologia , Simulação por Computador , Compostos Orgânicos de Estanho/síntese química , Compostos Orgânicos de Estanho/farmacologia , Bases de Schiff/síntese química , Bases de Schiff/farmacologia , Benzaldeídos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA/metabolismo , Humanos , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , Compostos Orgânicos de Estanho/química , Espécies Reativas de Oxigênio/metabolismo , Bases de Schiff/química
2.
Chirality ; 20(7): 863-70, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18381750

RESUMO

3alpha,12alpha-dihydroxy-5beta-cholan-24-oic acid (deoxycholic acid DCA) is able to discriminate between the R- and S-enantiomers of camphorquinone and endo-(+)-3-bromocamphor and select only the S-enantiomers from a racemic mixture. DCA forms novel well ordered 1:1 adducts with (1S)-(+)-camphorquinone and (1S)-endo-(-)-3-bromocamphor, both of which have been characterized by single crystal X-ray diffraction (SXRD). When DCA is cocrystallized with (RS)-camphorquinone and (RS)-endo-3-bromocamphor, 1:1 adducts of the S-enantiomers are produced together with crystals of the free racemic guest. In contrast, in the absence of (1S)-(+)-camphorquinone, DCA forms a 2:1 adduct with (1R)-(-)-camphorquinone. In this 2:1 adduct the guest is disordered at ambient temperature and undergoes a phase change in the region 160-130 K similar to that observed for the ferrocene adduct, but with only partial ordering of the guest. The SXRD structure of the low temperature form and the variable temperature (13)C CP/MAS NMR are reported. Cocrystallizing DCA with (1R)-endo-(+)-3-bromocamphor gives the free guest and a glassy solid.

3.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 3): 397-402, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28316818

RESUMO

The complete mol-ecule of the title hydrazine carbodi-thio-ate complex, [Ni(C19H21N2S2)2], is generated by the application of a centre of inversion. The NiII atom is N,S-chelated by two hydrazinecarbodi-thio-ate ligands, which provide a trans-N2S2 donor set that defines a distorted square-planar geometry. The conformation of the five-membered chelate ring is an envelope with the NiII atom being the flap atom. In the crystal, p-tolyl-C-H⋯π(benzene- i Pr), i Pr-C-H⋯π(p-tol-yl) and π-π inter-actions [between p-tolyl rings with inter-centroid distance = 3.8051 (12) Å] help to consolidate the three-dimensional architecture. The analysis of the Hirshfeld surface confirms the importance of H-atom contacts in establishing the packing.

4.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 4): 543-549, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28435717

RESUMO

The title di-thio-carbazate ester (I), C18H18N2S2 [systematic name: (E)-4-methyl-benzyl 2-[(E)-3-phenyl-allyl-idene]hydrazinecarbodi-thio-ate, comprises an almost planar central CN2S2 residue [r.m.s. deviation = 0.0131 Å]. The methyl-ene(tolyl-4) group forms a dihedral angle of 72.25 (4)° with the best plane through the remaining non-hydrogen atoms [r.m.s. deviation = 0.0586 Å] so the mol-ecule approximates mirror symmetry with the 4-tolyl group bis-ected by the plane. The configuration about both double bonds in the N-N=C-C=C chain is E; the chain has an all trans conformation. In the crystal, eight-membered centrosymmetric thio-amide synthons, {⋯HNCS}2, are formed via N-H⋯S(thione) hydrogen bonds. Connections between the dimers via C-H⋯π inter-actions lead to a three-dimensional architecture. A Hirshfeld surface analysis shows that (I) possesses an inter-action profile similar to that of a closely related analogue with an S-bound benzyl substituent, (II). Computational chemistry indicates the dimeric species of (II) connected via N-H⋯S hydrogen bonds is about 0.94 kcal mol-1 more stable than that in (I).

5.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 12): o1071-2, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26870503

RESUMO

In the title di-thio-carbazate compound, C17H19N3S2, the central CN2S2 residue is essentially planar (r.m.s. deviation = 0.0288 Å) and forms dihedral angles of 9.77 (8) and 77.47 (7)° with the substituted-pyridyl and p-tolyl rings, respectively, indicating a highly twisted mol-ecule; the dihedral angle between the rings is 85.56 (8)°. The configuration about the C=N bond is Z, which allows for the formation of an intra-molecular N-H⋯N(pyrid-yl) hydrogen bond. The packing features tolyl-methyl-C-H⋯N(imine), pyridyl-C-H⋯π(tol-yl) and π-π inter-actions [between pyridyl rings with a distance = 3.7946 (13) Å], which generates jagged supra-molecular layers that stack along the b axis with no directional inter-actions between them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA