Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896640

RESUMO

PURPOSE: The objective of this systematic review and meta-analysis was to assess the validity of the Actigraph triaxial accelerometer device in measuring physical activity energy expenditure (PAEE) in healthy adults, with indirect calorimetry (IC) serving as the validity criterion. METHODS: A comprehensive search was conducted using the PubMed, Web of Science, and sportdiscuss databases, in addition to manual searches for supplementary sources. Search strategies were employed that involved conducting single keyword searches using the terms "gt3x" and "Actigraph gt3x". The literature search encompassed the timeframe spanning from 1 January 2010 to 1 March 2023. The methodological quality of the studies included in the analysis was evaluated using both the Downs and Black checklist and the Consensus-Based Criteria for Selection of Measurement Instruments (COSMIN) checklist. The meta-analysis was conducted using the Review Manager 5.4 software. The standardized mean difference (SMD) was calculated and expressed as a 95% confidence interval (CI). The significance level was set at α = 0.05. A systematic assessment of the Actigraph's performance was conducted through the descriptive analysis of computed effect sizes. RESULTS: A total of 4738 articles were retrieved from the initial search. After eliminating duplicate articles and excluding those deemed irrelevant, a comprehensive analysis was conducted on a total of 20 studies, encompassing a combined sample size of 1247 participants. The scores on the Downs and Black checklist ranged from 10 to 14, with a mean score of 11.35. The scores on the COSMIN checklist varied from 50% to 100%, with an average score of 65.83%. The meta-analysis findings revealed a small effect size (SMD = 0.01, 95% CI = 0.50-0.52, p = 0.97), indicating no statistically significant difference (p > 0.05). CONCLUSIONS: The meta-analysis revealed a small effect size when comparing the Actigraph and IC, suggesting that the Actigraph can be utilized for assessing total PAEE. Descriptive analyses have indicated that the Actigraph device has limited validity in accurately measuring energy expenditure during specific physical activities, such as high-intensity and low-intensity activities. Therefore, caution should be exercised when utilizing this device for such purposes. Furthermore, there was a significant correlation between the activity counts measured by the Actigraph and the PAEE, indicating that activity counts can be utilized as a predictive variable for PAEE.


Assuntos
Lista de Checagem , Metabolismo Energético , Humanos , Adulto , Calorimetria Indireta , Software
2.
Sensors (Basel) ; 21(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069061

RESUMO

This study analysed the landing performance and muscle activity of athletes in forefoot strike (FFS) and rearfoot strike (RFS) patterns. Ten male college participants were asked to perform two foot strikes patterns, each at a running speed of 6 km/h. Three inertial sensors and five EMG sensors as well as one 24 G accelerometer were synchronised to acquire joint kinematics parameters as well as muscle activation, respectively. In both the FFS and RFS patterns, according to the intraclass correlation coefficient, excellent reliability was found for landing performance and muscle activation. Paired t tests indicated significantly higher ankle plantar flexion in the FFS pattern. Moreover, biceps femoris (BF) and gastrocnemius medialis (GM) activation increased in the pre-stance phase of the FFS compared with that of RFS. The FFS pattern had significantly decreased tibialis anterior (TA) muscle activity compared with the RFS pattern during the pre-stance phase. The results demonstrated that the ankle strategy focused on controlling the foot strike pattern. The influence of the FFS pattern on muscle activity likely indicates that an athlete can increase both BF and GM muscles activity. Altered landing strategy in cases of FFS pattern may contribute both to the running efficiency and muscle activation of the lower extremity. Therefore, neuromuscular training and education are required to enable activation in dynamic running tasks.


Assuntos
Tornozelo , , Articulação do Tornozelo , Fenômenos Biomecânicos , Marcha , Humanos , Masculino , Músculo Esquelético , Reprodutibilidade dos Testes
3.
Int J Sports Med ; 41(11): 776-782, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32485777

RESUMO

This study determined the effect of divided attention on controlling postural stability during a drop vertical jump task. In total, 30 participants were tested for drop vertical jumps from a 30-cm high platform and landing on a single leg with or without divided attention tasks. Three-dimensional marker trajectories and ground reaction forces were collected simultaneously. Vertical ground reaction force, loading rate, and dynamic postural stability index were analyzed with or without divided attention tasks. The paired sample t test indicated a significantly low knee flexion angle, high vertical ground reaction force, and increased loading rate in the divided attention task. Moreover, participants showed an increased vertical stability index and dynamic postural stability index in the divided attention task than in the nondivided attention task. Thus, results demonstrated that the divided attention task could affect posture control, leading to poor dynamic posture stability and possibly increasing lower extremity injury risk. The influence of the divided attention task on movement quality likely indicates that an athlete can no longer focus his attention on the bounce drop jump maneuver. Therefore, the bounce drop jump combined with dynamic postural stability index could be used in posture stability screening.


Assuntos
Atenção/fisiologia , Exercício Pliométrico/psicologia , Equilíbrio Postural , Fenômenos Biomecânicos , Cognição/fisiologia , Humanos , Joelho/fisiologia , Perna (Membro)/fisiologia , Movimento/fisiologia , Análise e Desempenho de Tarefas
5.
Bioengineering (Basel) ; 10(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37370600

RESUMO

Sports biomechanics is the study of the mechanical principles of human movement and how they apply to sports performance [...].

6.
Artigo em Inglês | MEDLINE | ID: mdl-36767100

RESUMO

This study examined what footwear type influenced plantar pressure and lower extremity muscle activations in jump rope training. Ten healthy physical-education graduate students participated in this study. The biomechanical parameters during the jump rope training were collected by an AMTI force platform, a Novel Pedar-X insole and a wireless electromyography (EMG) system. The results of the force platform indicate that vertical ground reaction force (vGRF) and contact time were much higher in the one-leg landing (both p = 0.001). The GRF, GRF (BW) and Lat MF pressure were significantly greater in the one-leg landing (p = 0.018, 0.013 and 0.027); the pressure of the Lat MF and H area were significantly greater in the volleyball shoe (p = 0.025, 0.031); the pressure of the Mid FF and Lat FF area were significantly greater in the jumping shoe (p = 0.005, 0.042). No significant difference in EMG was found between footwear and landing conditions. In summary, the running shoe and jumping shoe might be a better choice for people who exercise. However, the running shoe is recommended for people when both jumping and running are required.


Assuntos
Extremidade Inferior , Voleibol , Humanos , Extremidade Inferior/fisiologia , Eletromiografia , Exercício Físico/fisiologia , Sapatos
7.
Bioengineering (Basel) ; 9(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35447695

RESUMO

Footwear is among the most important equipment in sports to decrease injuries and enhance performance during exercise. In this study, we investigated differences in lower extremity plantar pressure and muscle activations during jump rope activities. Ten participants performed jump rope under two landing conditions with different footwear. A force platform (AMTI, 1000 Hz), a Novel Pedar-X system (Nove, 100 Hz), and a wireless electromyography (EMG) system (Noraxon, 1500 Hz) were used to measure biomechanical parameters during the jump rope exercise. Vertical ground reaction forces (vGRF), plantar pressure, and lower extremity muscle activations were analyzed. One-leg landing resulted in a significantly greater vGRF and shorter fly time than two-leg landing (p < 0.05). A significantly higher peak pressure and lesser toe (LT) area pressure was shown with the jumping shoe (all p < 0.05), but lower plantar pressure resulted in the middle foot area (p < 0.05). The EMG results of tibialis anterior (TA) were significantly greater with one-leg landing (all p < 0.05) during the pre- and background activity (BGA) phases. The results suggest that plantar pressure distribution should be considered when deciding on footwear during jump rope exercises, but care should be taken with regards to recovery after repeated collisions and fatigue. The jumping shoe provides benefits in terms of decreased plantar pressure sustained during jump rope exercises.

8.
Bioengineering (Basel) ; 9(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200421

RESUMO

Ankle sprains are generally the most common injuries that are frequently experienced by competitive athletes. Ankle sprains, which are the main cause of ankle instability, can impair long-term sports performance and cause chronic ankle instability (CAI). Thus, a comprehensive understanding of the key factors involved in repeated ankle strains is necessary. During jumping and landing, adaptation to the landing force and control of neuromuscular activation is crucial in maintaining ankle stability. Ankle mobility provides a buffer during landing, and peroneus longus activation inhibits ankle inversion; together, they can effectively minimize the risk of ankle inversion injuries. Accordingly, this study recommends that ankle mobility should be enhanced through active and passive stretching and muscle recruitment training of the peroneus longus muscles for landing strategies should be performed to improve proprioception, which would in turn prevent ankle sprain and injury to neighboring joints.

9.
Bioengineering (Basel) ; 10(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36671573

RESUMO

The sole is a key component of the interaction between foot and ground in daily activities, and its cushioning performance plays a crucial role in protecting the joints of lower limbs from impact injuries. Based on the excellent cushioning performance of the ostrich foot and inspired by the structure and material assembly features of the ostrich foot's metatarsophalangeal skeletal-tendon and the ostrich toe pad-fascia, a functional bionic cushioning unit for the midsole (including the forefoot and heel) area of athletic shoes was designed using engineering bionic technology. The bionic cushioning unit was then processed based on the bionic design model, and the shoe soles were tested with six impact energies ranging from 3.3 J to 11.6 J for a drop hammer impact and compared with the conventional control sole of the same size. The results indicated that the bionic forefoot area absorbed 9.83-34.95% more impact and 10.65-43.84% more energy than the conventional control forefoot area, while the bionic heel area absorbed 26.34-44.29% more impact and 28.1-51.29% more energy than the conventional control heel area when the controlled impact energy varied from 3.3 J to 11.6 J. The cushioning performance of the bionic cushioning sole was generally better than that of the conventional control sole, and the cushioning and energy-absorption performances of the heel bionic cushioning unit were better than those of the forefoot bionic cushioning unit. This study provides innovative reference and research ideas for the design and development of sports shoes with good cushioning performance.

10.
Healthcare (Basel) ; 10(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421627

RESUMO

This study investigated the effects of handheld-load-specific jump training on standing broad jump (SBJ) performance in youth athletes and the biomechanics changes involved. METHODS: Fifteen male athletes (mean age, body weight, height, and body mass index were 14.7 ± 0.9 years, 59.3 ± 8.0 kg, 1.73 ± 0.07 m, 19.8 ± 2, respectively) underwent 15 SBJ training sessions over 8 weeks. The data were collected over three phases: before training, after training, and after training with 4 kg loading. Ten infrared high-speed motion-capture cameras and two force platforms, whose sampling rates were 250 and 1000 Hz, respectively, were used to record the kinematic and kinetic data. Visual three-dimensional software was used for the data analyses. RESULTS: Jump performance and all biomechanics variables, including joint and takeoff velocities, ground reaction force, takeoff impulse, and mechanical outputs, improved after training. CONCLUSIONS: SBJ training under handheld loading resulted in considerable acute improvements as well as training transfer after 8 weeks. Moreover, explosive ability was effectively enhanced. The present findings serve as a reference for SBJ assessment and jump-related training.

11.
Healthcare (Basel) ; 9(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34683074

RESUMO

This study investigated differences in lower extremity muscle activations and vertical stiffness during a 2.2 Hz jump rope exercise with different midsole hardnesses (45, 50, 55, and 60 Shores C). Twelve healthy male participants wore customized shoes with different hardness midsoles and performed jump rope exercises in a random order. A nine-camera motion analysis system (150 Hz), a force platform (1500 Hz), and a wireless electromyography (EMG) system (Noraxon, 1500 Hz) were used to measure the biomechanical parameters during the jump rope exercise. The biceps femoris %MVC of barefoot participants was significantly greater than that of those wearing the 45 Shores C (p = 0.048) and 55 Shores C (p = 0.009) midsole 100 ms before landing. The vastus medialis %MVC of barefoot participants was significantly greater than that of those wearing the 55 C midsole (p = 0.005). Nonsignificant differences in vertical stiffness were found between midsole hardnesses and barefoot. Lower extremity muscle activation differed between conditions. The results of this study indicate that for repetitive activities that entail multiple impacts, sports shoes with a low midsole hardness (e.g., 50 Shores C or 45 Shores C) may be appropriate. It is important to provide customers with information regarding midsole hardness in shoe product labeling so that they properly consider the function of the shoes.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34068833

RESUMO

The study aimed to investigate the acute effects of handheld loading on standing broad jump (SBJ) performance and biomechanics. Fifteen youth male athletes (mean age: 14.7 ± 0.9 years; body mass: 59.3 ± 8.0 kg; height: 1.73 ± 0.07 m) volunteered to participate in the study. Participants were assigned to perform SBJ with and without 4 kg dumbbells in a random order. Kinematic and kinetic data were collected using 10 infrared high-speed motion-capture cameras at a 250 Hz sampling rate and two force platforms at a 1000 Hz sampling rate. A paired t-test was applied to all variables to determine the significance between loading and unloading SBJs. Horizontal distance (p < 0.001), take-off distance (p = 0.001), landing distance (p < 0.001), horizontal velocity of center of mass (CoM; p < 0.001), push time (p < 0.001), vertical impulse (p = 0.003), and peak horizontal and vertical ground reaction force (GRF; p < 0.001, p = 0.017) were significantly greater in loading SBJ than in unloading SBJ. The take-off vertical velocity of CoM (p = 0.001), take-off angle (p < 0.001), peak knee and hip velocity (p < 0.001, p = 0.007), peak ankle and hip moment (p = 0.006, p = 0.011), and peak hip power (p = 0.014) were significantly greater in unloading SBJ than in loading SBJ. Conclusions: Acute enhancement in SBJ performance was observed with handheld loading. The present findings contribute to the understanding of biomechanical differences in SBJ performance with handheld loading and are highly applicable to strength and conditioning training for athletes.


Assuntos
Atletas , Articulação do Joelho , Adolescente , Articulação do Tornozelo , Fenômenos Biomecânicos , Humanos , Cinética , Masculino
13.
J Hum Kinet ; 64: 71-76, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30429900

RESUMO

The purpose of this study was to determine the differences in biomechanical characteristics between one- and two-legged running vertical jumps (1-LRVJ and 2-LRVJ). Ten male college volleyball players voluntarily participated in this study. Two running vertical jumps used in volleyball were randomly performed. Three trials for each type of the running vertical jump were recorded for each participant. Data were collected using six infra-red Qualisys motion-capture cameras at a 180-Hz sampling rate and two AMTI force platforms at an 1800-Hz sampling rate. Jump height in the 2-LRVJ was significantly higher than that in the 1-LRVJ (p < 0.05). In the take-off phase, knee and hip extension impulses for the 1-LRVJ were significantly greater than those for the 2-LRVJ (p < 0.05). These results suggest that the 1-LRVJ produced greater leg stiffness than the 2-LRVJ did. We found that the 1-LRVJ caused greater lower-extremity stiffness and impulse compared to the 2-LRVJ, which is beneficial in the stretch-shortening cycle, and thus the more focus on practicing 1-LRVJs is recommended for coaches and athletes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA