Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytochem Anal ; 33(8): 1205-1213, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36111358

RESUMO

INTRODUCTION: 3-Nitropropionic acid (3-NPA) is a toxic compound that can accumulate in esterified form in the Fabaceae family. In the Lotae tribe, many species have been identified as 3-NPA producers (e.g., Securigera varia), while some of the genetically close Lotae plants were formerly reported as 3-NPA-free (e.g., Lotus corniculatus and Anthyllis vulneraria). These plants are used as forage and have a tradition in ethnomedicine, also, the extracts of A. vulneraria are used in cosmetics. OBJECTIVES: Our aim was to investigate the 3-NPA content of these selected Fabaceae species and to develop a validated quantitative method to evaluate 3-NPA concentrations in extracts of different herbal parts and cosmetic products. MATERIALS AND METHODS: A UHPLC-ESI-Orbitrap-MS/MS method was applied for detection and identification of 3-NPA derivatives in the form of glucose esters. For the quantitative analysis, an optimized sample processing method was developed. The free 3-NPA content was determined using HPLC-ESI-MS/MS. RESULTS: 3-NPA esters could be detected in all three species, but their quantity showed a high variation. S. varia contained 0.5-1.0 g/100 g of 3-NPA, while in L. corniculatus samples only trace quantities were detectable, below the LOQ (25 ng/ml). Most of the A. vulneraria samples showed similarly low concentrations, but one sample had 3-NPA levels comparable to S. varia. 3-NPA could not be detected in the tested cosmetics containing A. vulneraria extracts. CONCLUSIONS: Using highly sensitive analytical methods, new 3-NPA-containing species were identified. The developed validated quantitative method is suitable for the determination of 3-NPA concentrations in herbal samples.


Assuntos
Fabaceae , Cromatografia Líquida de Alta Pressão , Propionatos , Espectrometria de Massas em Tandem
2.
Life (Basel) ; 13(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511935

RESUMO

In lipase-catalyzed kinetic resolutions (KRs), the choice of immobilization support and acylating agents (AAs) is crucial. Lipase B from Candida antarctica immobilized onto magnetic nanoparticles (CaLB-MNPs) has been successfully used for diverse KRs of racemic compounds, but there is a lack of studies of the utilization of this potent biocatalyst in the KR of chiral amines, important pharmaceutical building blocks. Therefore, in this work, several racemic amines (heptane-2-amine, 1-methoxypropan-2-amine, 1-phenylethan-1-amine, and 4-phenylbutan-2-amine, (±)-1a-d, respectively) were studied in batch and continuous-flow mode utilizing different AAs, such as diisopropyl malonate 2A, isopropyl 2-cyanoacetate 2B, and isopropyl 2-ethoxyacetate 2C. The reactions performed with CaLB-MNPs were compared with Novozym 435 (N435) and the results in the literature. CaLB-MNPs were less active than N435, leading to lower conversion, but demonstrated a higher enantiomer selectivity, proving to be a good alternative to the commercial form. Compound 2C resulted in the best balance between conversion and enantiomer selectivity among the acylating agents. CaLB-MNPs proved to be efficient in the KR of chiral amines, having comparable or superior properties to other CaLB forms utilizing porous matrices for immobilization. An additional advantage of using CaLB-MNPs is that the purification and reuse processes are facilitated via magnetic retention/separation. In the continuous-flow mode, the usability and operational stability of CaLB-MNPs were reaffirmed, corroborating with previous studies, and the results overall improve our understanding of this potent biocatalyst and the convenient U-shape reactor used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA