Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 182(4): 965-974, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19323792

RESUMO

Holoparasitic plants such as Orobanche spp. have lost their photosynthetic ability, so photoresponses to optimize photosynthesis are not necessary in these plants. Photoresponses are also involved in the regulation of plant development but the photoresponses of holoparasites have not been characterized in detail. In this study, the phytochrome (phy)-related photoresponse of Orobanche minor was investigated. Its photoreceptor, phytochrome A (OmphyA), was also characterized. Light effects on germination, shoot elongation, anthocyanin biosynthesis, and OmphyA expression and subcellular localization were analyzed. Red light (R):far-red light (FR) reversible inhibition of O. minor seed germination demonstrated that phy-mediated responses are retained in this holoparasite. Shoot elongation was inhibited by FR but not by R. This pattern is unique among known patterns of plant photoresponses. Additionally, molecular analysis showed that OmphyA is able to respond to the light signals. Interestingly, the unique pattern of photoresponses in O. minor seems to have been modified for adaptation to its parasitic life cycle. We hypothesize that this alteration has resulted from the loss or alteration of some phy-signaling components. Elucidation of altered components in phy signaling in this parasite will provide useful information not only about its physiological characteristics but also about general plant photoreception systems.


Assuntos
Orobanche/metabolismo , Parasitos/metabolismo , Fitocromo A/metabolismo , Animais , Antocianinas/biossíntese , Western Blotting , Regulação da Expressão Gênica de Plantas , Germinação/efeitos da radiação , Proteínas de Fluorescência Verde/metabolismo , Luz , Orobanche/genética , Orobanche/efeitos da radiação , Parasitos/genética , Parasitos/efeitos da radiação , Fotoperíodo , Fitocromo A/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Transporte Proteico/efeitos da radiação , Protoplastos/metabolismo , Protoplastos/efeitos da radiação , Sementes/crescimento & desenvolvimento , Sementes/efeitos da radiação , Frações Subcelulares/metabolismo , Frações Subcelulares/efeitos da radiação , Fatores de Tempo
2.
J Plant Physiol ; 192: 90-7, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26881925

RESUMO

Effects of α-ketol linolenic acid (KODA) application on endogenous abscisic acid (ABA), jasmonic acid (JA), and aromatic volatiles were investigated in 'Kyoho' grapes (Vitis labrusca×Vitis vinifera) infected by a pathogen (Glomerella cingulata). The expressions of 9-cis-epoxycarotenoid dioxygenase (VvNCED1), ABA 8'-hydroxylase (VvCYP707A1), lipoxygenase (VvLOX), and allene oxide synthase (VvAOS) were also examined. The grape berries were dipped in 0.1mM KODA solution before inoculation with the pathogen and stored at 25°C for 12 days. The development of infection was significantly suppressed upon KODA treatment. Endogenous ABA, JA and phaseic acid (PA) were induced in inoculated berries. KODA application before inoculation increased endogenous ABA, PA and JA through the activation of VvNCED1, VvCYP707A1 and VvAOS genes, respectively. In addition, terpenes, methyl salicylate (Me-SA) and C6-aldehydes such as (E)-2-hexenal and cis-3-hexenal associated with fungal resistance also increased in KODA-treated berries during storage. These results suggest that the synergistic effect of JA, ABA, and some aromatic volatiles induced by KODA application may provide resistance to pathogen infection in grape berries.


Assuntos
Proteínas de Arabidopsis/metabolismo , Phyllachorales/fisiologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Vitis/genética , Ácido Abscísico/metabolismo , Aldeídos/metabolismo , Antioxidantes/metabolismo , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Frutas/genética , Frutas/imunologia , Frutas/microbiologia , Frutas/fisiologia , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Lipoxigenase/genética , Lipoxigenase/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/imunologia , Vitis/microbiologia , Vitis/fisiologia , Ácido alfa-Linolênico/metabolismo
3.
Biosci Biotechnol Biochem ; 66(12): 2692-7, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12596869

RESUMO

The progenitors of damascenone (1), the most intensive C13-norisoprenoid volatile aroma constituent of rose essential oil, were surveyed in the flowers of Rosa damascena Mill. Besides 9-O-beta-D-glucopyranosyl-3-hydroxy-7,8-didehydro-beta-ionol (4b), a stable progenitor already isolated from the residual water after steam distillation of flowers of R. damascena Mill., two labile progenitors were identified to be (3S, 9R)- and (3S, 9S)-megastigma-6,7-dien-3,5,9-triol 9-O-beta-D-glucopyranosides (2b) based on their synthesis and HPLC-MS analytical data. Compound 2b gave damascenone (1), 3-hydroxy-beta-damascone (3) and 4b upon heating under acidic conditions.


Assuntos
Flores/metabolismo , Glucosídeos/metabolismo , Norisoprenoides , Rosa/metabolismo , Terpenos/metabolismo , Cromatografia Líquida de Alta Pressão , Cicloexanos/química , Cicloexanos/metabolismo , Glucosídeos/química , Estrutura Molecular , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA