Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768603

RESUMO

To explore the molecular mechanisms of action underlying the antileukemia activities of darinaparsin, an organic arsenical approved for the treatment of peripheral T-cell lymphoma in Japan, cytotoxicity of darinaparsin was evaluated in leukemia cell lines NB4, U-937, MOLT-4 and HL-60. Darinaparsin was a more potent cytotoxic than sodium arsenite, and induced apoptosis/necrosis in NB4 and HL-60 cells. In NB4 cells exhibiting the highest susceptibility to darinaparsin, apoptosis induction was accompanied by the activation of caspase-8/-9/-3, a substantial decrease in Bid expression, and was suppressed by Boc-D-FMK, a pancaspase inhibitor, suggesting that darinaparsin triggered a convergence of the extrinsic and intrinsic pathways of apoptosis via Bid truncation. A dramatic increase in the expression level of γH2AX, a DNA damage marker, occurred in parallel with G2/M arrest. Activation of p53 and the inhibition of cdc25C/cyclin B1/cdc2 were concomitantly observed in treated cells. Downregulation of c-Myc, along with inactivation of E2F1 associated with the activation of Rb, was observed, suggesting the critical roles of p53 and c-Myc in darinaparsin-mediated G2/M arrest. Trolox, an antioxidative reagent, suppressed the apoptosis induction but failed to correct G2/M arrest, suggesting that oxidative stress primarily contributed to apoptosis induction. Suppression of Notch1 signaling was also confirmed. Our findings provide novel insights into molecular mechanisms underlying the cytotoxicity of darinaparsin and strong rationale for its new clinical application for patients with different types of cancer.


Assuntos
Antineoplásicos , Arsenicais , Leucemia , Humanos , Proteína Supressora de Tumor p53 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Arsenicais/farmacologia , Leucemia/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral
2.
Exp Cell Res ; 400(1): 112440, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359470

RESUMO

Neurons require adhesive scaffolds for their growth and differentiation. Laminins are a major cell adhesive component of basement membranes and have various biological activities in the peripheral and central nervous systems. Here, we evaluated the biological activities of 5 peptides derived from laminin-111 as a scaffold for mouse neuroblastoma Neuro2a cells and rat neural stem/progenitor cells (NPCs). The 5 peptides showed Neuro2a cell attachment activity similar to that of poly-d-lysine. However, when NPCs were cultured on the peptides, 2 syndecan-binding peptides, AG73 (RKRLQVQLSIRT, mouse laminin α1 chain 2719-2730) and C16 (KAFDITYVRLKF, laminin γ1 chain 139-150), demonstrated significantly higher cell attachment and neurite extension activities than other peptides including integrin-binding ones. Long-term cell culture experiments showed that both AG73 and C16 supported the growth of neurons and astrocytes that had differentiated from NPCs. Furthermore, C16 markedly promoted the expression of neuronal markers such as synaptosomal-associated protein-25 and syntaxin 1A. These results indicate that AG73 and C16 are useful for NPC cultures and that C16 can be applied to specialized research on synapses in differentiated neurons. These peptides have the potential for use as valuable biomaterials for NPC research.


Assuntos
Laminina/química , Células-Tronco Neurais/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neurogênese , Fragmentos de Peptídeos/farmacologia , Animais , Materiais Biocompatíveis/química , Quitosana/química , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ratos , Ratos Wistar , Células Tumorais Cultivadas
3.
Biol Pharm Bull ; 45(6): 770-779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35650104

RESUMO

Neuronal cell death after cerebral ischemia consists various steps including glutamate excitotoxity. Excessive Ca2+ influx through the N-methyl-D-aspartate (NMDA) receptor, which is one of the ionotropic glutamate receptors, plays a central role in neuronal cell death after cerebral ischemia. We previously reported that DNA methylation is transiently increased in neurons during ischemic injury and that this aberrant DNA methylation is accompanied by neuronal cell death. Therefore, we performed the present experiments on glutamate excitotoxicity to gain further insight into DNA methylation involvement in the neuronal cell death. We demonstrated that knockdown of DNA methyltransferase (DNMT)1, DNMT3a, or DNMT3b gene in Neuro2a cells was performed to examine which DNMTs were more important for neuronal cell death after glutamate excitotoxicity. Although we confirmed a decrease in the levels of the target DNMT protein after small interfering RNA (siRNA) transfection, the Neuro2a cells were not protected from injury by transfection with siRNA for each DNMT. We next revealed that the pharmacological inhibitor of DNMTs protected against glutamate excitotoxicity in Neuro2a cells and also in primary cultured cortical neurons. This protective effect was associated with a decrease in the number of 5-methylcytosine (5 mC)-positive cells under glutamate excitotoxicity. In addition, the increased level of cleaved caspase-3 was also reduced by a DNMT inhibitor. Our results suggest the possibility that at least 2 or all DNMTs functionally would cooperate to activate DNA methylation after glutamate excitotoxicity and that inhibition of DNA methylation in neurons after cerebral ischemia might become a strategy to reduce the neuronal injury.


Assuntos
Isquemia Encefálica , Ácido Glutâmico , Morte Celular , Citidina/análogos & derivados , Metilação de DNA , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Humanos , RNA Interferente Pequeno/genética , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Mol Cell Neurosci ; 113: 103625, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33933589

RESUMO

In a previous study, we demonstrated that neutrophil elastase is activated in the brain parenchyma after cerebral ischemia, which enzyme cleaves progranulin (PGRN), an anti-inflammatory factor. In that study, we also found that sivelestat, a selective neutrophil elastase inhibitor, attenuates ischemia-induced inflammatory responses. However, it was not clear whether this anti-inflammatory effect was due to the direct effect of sivelestat. In this study, we evaluated the effects of sivelestat or recombinant PGRN (rPGRN) on cell injuries in cultured neurons, astrocytes, and microglia under oxygen/glucose deprivation (OGD) conditions. We demonstrated that OGD-induced neuronal cell injury, astrocyte activation, and increased proinflammatory cytokines caused by microglial activation, were suppressed by rPGRN treatment, whereas sivelestat had no effect on any of these events. These results indicate that the anti-inflammatory responses after in vivo cerebral ischemia were not due to the direct action of sivelestat but due to the suppression of PGRN cleavage by inhibition of elastase activity. It was also suggested that the pleiotropic effect of rPGRN could be attributed to the differentiation of M1 microglia into anti-inflammatory type M2 microglia. Therefore, the inhibition of PGRN cleavage by sivelestat could contribute to the establishment of a new therapeutic approach for cerebral ischemia.


Assuntos
Anti-Inflamatórios/farmacologia , Isquemia Encefálica/metabolismo , Glicina/análogos & derivados , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Progranulinas/farmacologia , Inibidores de Serina Proteinase/farmacologia , Sulfonamidas/farmacologia , Animais , Hipóxia Celular , Células Cultivadas , Citocinas/metabolismo , Glicina/farmacologia , Masculino , Neuroglia/metabolismo , Neurônios/metabolismo , Elastase Pancreática/antagonistas & inibidores , Ratos , Ratos Wistar , Proteínas Recombinantes/farmacologia
5.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216064

RESUMO

We previously demonstrated that sivelestat, a selective neutrophil elastase inhibitor, attenuates the cleavage of progranulin (PGRN) and ischemia-induced cell injury in the brain. To obtain further insight into the role of PGRN, in the present study we evaluated the direct effects of sivelestat and recombinant PGRN (rPGRN) on the proliferation and differentiation of neural stem cells in cultures of neural stem/progenitor cells (NS/PC) under the ischemic condition in vitro. We demonstrated that oxygen/glucose deprivation (OGD)-induced cell proliferation of NS/PC was increased by rPGRN treatment. In addition, this increase was accompanied by increased phosphorylation of Akt and GSK-3ß (Ser9) after OGD. But none of these responses occurred by treatment with sivelestat. Therefore, activation of the Akt/GSK-3ß pathway could well be involved in this proliferative effect of rPGRN. Although OGD and reoxygenation-induced changes in the differentiation of NS/PC into neurons or astrocytes was not affected by treatment with rPGRN or sivelestat, it is noteworthy that rPGRN enhanced neurite outgrowth of ß3-tubulin-positive neurons that had differentiated from the NS/PC. These findings suggest that enhancement of proliferation of endogenous NS/PC and neurite outgrowth of differentiated neurons from NS/PC by PGRN could be useful for a new therapeutic approach for cerebral ischemia.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glucose/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Oxigênio/metabolismo , Progranulinas/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar
6.
BMC Complement Altern Med ; 19(1): 216, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412862

RESUMO

BACKGROUND: Breast cancer is still the most common malignant tumor that threatens the female's life in the world, especially triple-negative breast cancer (TNBC), one of the most difficult subtypes. Lack of targeted therapies brings about urgent demand for novel treatments. In this study we aim to investigate the anti-tumor activity of Berberine (BBR), a Chinese plant-derived alkaloid, against the TNBC cell line MDA-MB-231 and elucidate its mechanism referring to anti-inflammation. METHODS: Cell inhibition rate was measured by Cell Proliferation Assay, the cytotoxic effects was detected by Lactate dehydrogenase (LDH) leakage assay, the colony formation and migration potential were evaluated by colony formation assay and wound healing assay, the release of inflammatory cytokines was detected by EMD multifactor detection, and alterations of proteins and genes related to the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway were analyzed using western blotting and real-time Polymerase Chain Reaction (PCR). RESULTS: BBR reduce the viability of MDA-MB-231 cells and increased the release of LDH from the cells in a dose-dependent manner, with and inhibition of colony formation potential and migration of the cells. BBR also caused a marked reduction in the secretion of proinflammatory cytokines, Interleukin-1α (IL-1α), Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Besides, a down-regulated behavior was observed with the expression of P2X purinoceptor 7 (P2X7), NLRP3, pro-caspase-1, apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1 p20, Interleukin-18 (IL-18), IL-1ß proteins and NLRP3, Caspase-1 and ASC mRNAs in the NLRP3 inflammasome cascade. CONCLUSIONS: Our results confirmed that BBR can effectively affect both tumor outgrowth and spontaneous metastasis in TNBC, and that we identified a new mechanism associated with inhibition the NLRP3 inflammasome pathway, suggesting its potential therapeutic relevance in clinical use.


Assuntos
Berberina/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Apoptose/efeitos dos fármacos , Caspase 1/genética , Caspase 1/imunologia , Feminino , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/fisiopatologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
7.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640144

RESUMO

Progranulin (PGRN) plays a crucial role in diverse biological processes, including cell proliferation and embryonic development. PGRN can be cleaved by neutrophil elastase to release granulin (GRN). PGRN has been found to inhibit inflammation. Whereas, GRN plays a role as a pro-inflammatory factor. However, the pathophysiological roles of PGRN and GRN, at early stages after cerebral ischemia, have not yet been fully understood. The aim of this study was to obtain further insight into the pathologic roles of PGRN and GRN. We demonstrated that the amount of PGRN was significantly increased in microglial cells after cerebral ischemia in rats and that neutrophil elastase activity was also increased at an early stage after cerebral ischemia, resulting in the production of GRN. The inhibition of neutrophil elastase activity suppressed PGRN cleavage and GRN production, as well as the increase in pro-inflammatory cytokines, after cerebral ischemia. The administration of an elastase inhibitor decreased the number of injured cells and improved the neurological deficits test scores. Our findings suggest that an increase in the activity of elastase to cleave PGRN, and to produce GRN, was involved in an inflammatory response at the early stages after cerebral ischemia, and that inhibition of elastase activity could suppress the progression of cerebral ischemic injury.


Assuntos
Isquemia Encefálica/metabolismo , Granulinas/metabolismo , Elastase de Leucócito/metabolismo , Progranulinas/metabolismo , Animais , Células Cultivadas/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Glicina/análogos & derivados , Glicina/farmacologia , Elastase de Leucócito/antagonistas & inibidores , Masculino , Microglia/metabolismo , Ratos , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos
8.
Cancer Cell Int ; 18: 113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123091

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is one of the most difficult subtypes of breast cancer to treat due to its aggressive, metastatic behavior, and a lack of a targeted therapy. Trivalent arsenic derivatives (arsenite, AsIII) with remarkable clinical efficacy in acute promyelocytic leukemia has been demonstrated to exhibit inhibitory effect against breast cancer cells. To provide novel insight into the development of new therapeutic strategies, antitumor activity of AsIII and tetrandrine (Tetra), a Chinese plant-derived alkaloid, against the TNBC cell line MDA-MB-231 in vitro and in vivo was investigated. METHODS: Cytotoxicity was evaluated using cell viability, lactate dehydrogenase leakage and cell cycle assay. Alterations of genes related to cell proliferation and death were analyzed using western blotting. In vivo antitumor activity of AsIII alone or in combination with Tetra was studied using MDA-MB-231 xenografts in nude mice. RESULTS: Synergistic cytotoxic effects of two drugs were observed in the cells. In vivo study also showed that co-administration of AsIII and Tetra significantly reduced tumor volume and weight, directly supporting its in vitro antitumor activity. No deaths and reduction of body-weight were observed after a long-term co-administration, indicating its good tolerability. S-phase arrest associated with the upregulation of FOXO3a, p27 along with decreased Cyclin D1 expression was observed in the cells treated with the combined regimen. A substantial upregulated p21 expression and downregulated phospho-FOXO3a and Cyclin D1 expression was observed in the tumor tissues of mice co-administered with AsIII and Tetra. Autophagy induction was observed in the combination treatment in vitro and in vivo. The addition of wortmannin, a potent autophagy inhibitor, significantly rescued MDA-MB-231 cells from their cytotoxicity of AsIII and Tetra. CONCLUSIONS: S-phase arrest, autophagic and necrotic cell death contribute to the cytocidal effects of the combined regimen of AsIII and Tetra. Considering our previous study showing synergistic cytotoxic effects of the combined regimen in estrogen receptor-positive breast cancer cell line MCF-7, these results suggest that development of the combination regimen of AsIII plus Tetra may offer many benefits to patients with different types of breast cancer.

9.
Arch Biochem Biophys ; 648: 53-59, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29678629

RESUMO

Cell adhesive biomaterials have been used for various cells in culture, especially for primary cultures of neurons. Here we examined laminin-111 and its active peptides conjugated to chitosan matrices (ChtMs) for primary culture of rat cortical neurons. Laminin-111 on poly-d-lysine substrate promoted neuronal cell attachment and differentiation. The biological activity of six active laminin-111-derived peptides was examined using a peptide-ChtM construct. When the syndecan-binding peptides, AG73 (RKRLQVQLSIRT, mouse laminin α1 chain 2719-2730) and C16 (KAFDITYVRLKF, laminin γ1 chain 139-150), were conjugated to chitosan, AG73-ChtM and C16-ChtM showed potent neuronal cell attachment activity and promoted axon extension by primary cultured rat cortical neurons. However, the remaining peptides, including integrin-binding peptides, did not show activity when conjugated to ChtM. AG73-ChtM and C16-ChtM also supported neuron survival for at least 4 weeks in serum-free medium without a glia feeder layer. These data suggest that AG73-ChtM and C16-ChtM are useful for primary cultures of central nervous system neurons and have a potential for use as functional biomaterials for tissue engineering in the central nervous system.


Assuntos
Encéfalo/citologia , Quitosana/química , Quitosana/farmacologia , Laminina/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Peptídeos/química , Sequência de Aminoácidos , Animais , Adesão Celular/efeitos dos fármacos , Camundongos , Neuritos/efeitos dos fármacos , Ratos
10.
Molecules ; 24(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591646

RESUMO

Toad skin and toad venom, as two kinds of Chinese medicine, are prepared from Bufo bufo gargarizans Cantor and Bufo melanostictus Schneider. However, they display distinct properties in traditional application, and the hydrophilic ingredients are the possible distinguishing chemicals between them. In this work, 36 and 22 hydrophilic components were characterized from toad skin and venom, respectively, by UHPLC-HR-MS/MS, including amino acids, nucleosides, polypeptides, and indolealkylamines (IAAs). Among them, 15 compounds were unambiguously confirmed by comparison with standards. The CID-MS/MS fragmentation behaviors of seven indolealkylamine references were investigated to ascertain three types of structures. Subsequently, 11 high abundance contents of hydrophilic ingredients were determined from 11 batches of toad skin and 4 batches of toad venom by UPLC-QqQ-MS/MS. The quantitative results showed that the content of main IAAs in toad venom was much higher than in skin. In addition, the N-methyl serotonin (free IAA), bufothionine (combined IAA), and total IAAs sample were selected for anti-inflammatory evaluation in lipopolysaccharide (LPS) stimulated zebrafish embryo models. The obvious anti-inflammatory activities of IAAs were observed, especially for the free IAAs. This study illustrated IAAs were the main distinct hydrophilic components that probably lead to the difference between toad skin and toad venom in traditional applications.


Assuntos
Aminas/farmacologia , Venenos de Anfíbios/química , Anti-Inflamatórios/farmacologia , Bufonidae/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Pele/química , Espectrometria de Massas em Tandem/métodos , Aminas/química , Animais , Cromatografia Líquida de Alta Pressão , Alcaloides Indólicos/farmacologia , Lipopolissacarídeos , Análise de Componente Principal , Compostos de Quinolínio/farmacologia , Padrões de Referência , Serotonina/análogos & derivados , Serotonina/farmacologia , Peixe-Zebra
11.
Toxicol Appl Pharmacol ; 305: 161-168, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27317373

RESUMO

Carnosic acid (CA), a phenolic diterpene isolated from Rosmarinus officinalis, has been shown to activate nuclear transcription factor E2-related factor 2 (Nrf2), which plays a central role in cytoprotective responses to oxidative and electrophilic stress. Recently, the Nrf2-Kelch ECH associating protein 1 (Keap1) pathway has been associated with cancer drug resistance attributable to modulation of the expression and activation of antioxidant and detoxification enzymes. However, the exact mechanisms by which Nrf2 activation results in chemoresistance are insufficiently understood to date. This study investigated the mechanisms by which the cytotoxic effects of arsenic trioxide (ATO), an anticancer drug, were decreased in acute promyelocytic leukemia cells treated with CA, a typical activator of Nrf2 used to stimulate the Nrf2/Keap1 system. Our findings suggest that arsenic is non-enzymatically incorporated into NB4 cells and forms complexes that are dependent on intracellular glutathione (GSH) concentrations. In addition, the arsenic complexes are recognized as substrates by multidrug resistance proteins and subsequently excreted from the cells. Therefore, Nrf2-associated activation of the GSH biosynthetic pathway, followed by increased levels of intracellular GSH, are key mechanisms underlying accelerated arsenic efflux and attenuation of the cytotoxic effects of ATO.


Assuntos
Citotoxinas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Óxidos/toxicidade , Abietanos/farmacologia , Arsênio/metabolismo , Trióxido de Arsênio , Arsenicais , Linhagem Celular Tumoral , Glutationa/metabolismo , Humanos , Leucemia Promielocítica Aguda/metabolismo , Fator 2 Relacionado a NF-E2/genética , RNA Interferente Pequeno/genética
12.
Cancer Cell Int ; 16: 37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27182202

RESUMO

BACKGROUND: Lyn, an import member of Src family kinases (SFKs), is supposed to be implicated in acute myeloid leukemia (AML) pathogenesis and development by participation in AML differentiation, yet the details still remain incompletely understood. The expression status of Lyn and its correlation with multiple clinical parameters including cell differentiation degree, different cytogenetic risk classification, and the activity of myeloperoxidase (MPO) were thus investigated. To address the mechanisms underlying the involvement of Lyn in differentiation induction, the effects of dasatinib, an inhibitor for SFKs including Lyn, on the alterations of all-trans retinoic acid (ATRA)- or dihydroxyvitamin D3 (VD3)-induced differentiation, and c-Myc protein expression were investigated. METHODS: Primary AML blasts were obtained from 31 newly diagnosed AML patients with different French-American-British (FAB) subtypes. The expression of phosphorylated and total Lyn, c-Myc, and CD11b, CD11c and CD15 was analyzed by flow cytometry. The activation of Akt and Erk known to be involved in the regulation of c-Myc expression was investigated using western blotting. RESULTS: Significant higher expression levels of total Lyn were observed in AML patients with favorable cytogenetics, higher MPO activity and FAB M2 subtype. A clear positive correlation between the expression levels of Lyn and differentiation status of primary AML blasts was observed. Dasatinib inhibited the expression of phosphorylated Lyn, and further enhanced the differentiation-inducing activity of ATRA and VD3 in HL-60 cells. Augmented downregulation of c-Myc protein expression was observed in the combination treatment with ATRA, VD3 and dasatinib compared to treatment with each reagent alone in HL-60 cells. The suppression of the activation of Akt and Erk was also observed concomitantly. CONCLUSIONS: The expression level of total Lyn is closely linked to the differentiation status of AML blasts. The enhancement of differentiation-inducing activity of ATRA/VD3 by dasatinib suggested that Lyn was associated in the negative regulation of ATRA/VD3-induced HL-60 cells differentiation. The enhancement probably was attributed to the downregulation of c-Myc implicated with the suppression of the activation of Akt and Erk. These results provide novel insights into a possible combinational therapeutic approach by targeting Lyn for AML patients, and offer new possibilities for the combination therapy with VD3 and dasatinib.

13.
Biol Pharm Bull ; 38(8): 1104-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26235573

RESUMO

Functions of the central nervous system (CNS) are based on a complex neural network. It is believed that the CNS has several neuroprotective mechanisms operated by neurons, glia and other types of cells against various types of neuronal damage. Since mature, differentiated neurons are not able to divide, it is important to protect neurons from damage prior to death. The neuroprotective effects of a number of pharmaceutical agents and natural products against necrosis and apoptosis of the CNS neurons have been reported, thus this review will mainly discuss several endogenous neuroprotectants and their mechanisms.


Assuntos
Apoptose , Fatores Biológicos/metabolismo , Sistema Nervoso Central/metabolismo , Neuroproteção , Fármacos Neuroprotetores , Sistema Nervoso Central/citologia , Sistema Nervoso Central/patologia , Humanos , Necrose , Neuroglia/metabolismo , Neurônios/metabolismo
14.
J Pharmacol Sci ; 125(4): 333-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25030744

RESUMO

Cerebral ischemia, a pathological condition in which brain tissue experiences a shortage of cerebral blood flow, is associated with cerebrovascular disease, brain trauma, epilepsy, and cardiac arrest. A reduction in blood flow leaves the brain tissue unsupplied with oxygen and glucose, thus leading to cell death in the ischemic core as well as subsequent peripheral injury in the penumbra. Neurons in the penumbra, where reperfusion occurs, are functionally inactive but still viable. Many biochemical changes, which may lead to neuronal cell death, thereby induce dysfunction of the central nervous system. However, the mechanisms responsible for ischemic stroke-induced cell damage remain to be determined. Protein phosphorylation has been implicated in the regulation of diverse cellular responses in the brain. Initially, tyrosine phosphorylation was considered to be involved in the regulation of cell growth and development. In addition, a variety of synaptic and cellular functions mediated by tyrosine phosphorylation in the brain were found to be associated with relatively high levels of protein tyrosine kinase activity. However, the involvement of this protein tyrosine kinase activity in ischemic cell death is still not fully understood. This review summarizes recent advances dealing with the possible implications of protein tyrosine phosphorylation in the ischemic brain.


Assuntos
Isquemia Encefálica/metabolismo , Tirosina/metabolismo , Angiopoietinas/fisiologia , Animais , Isquemia Encefálica/etiologia , Proteínas de Transporte , Efrinas/metabolismo , Proteínas de Arcabouço Homer , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Terapia de Alvo Molecular , Fatores de Crescimento Neural/fisiologia , Ocludina/metabolismo , Fosforilação , Proteínas Tirosina Quinases/fisiologia , Receptores da Família Eph/metabolismo , Receptores de Glutamato/metabolismo
15.
Biomed Pharmacother ; 176: 116778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788601

RESUMO

The incidence of cerebral infarction triggered by abnormal glucose tolerance has increased; however, the relationship between glucose concentration in the brain and the detailed mechanism of post ischemic cell death remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT), an adipocytokine, is the rate-limiting enzyme for NAD+ synthesis in the salvage pathway. Although NAMPT activation prevents neuronal injury, the relationship between NAMPT activity, glucose metabolism disorders, and cerebral ischemia-induced neuronal cell death is unknown. In this study, we determined changes in NAMPT on cerebral ischemic injuries with diabetes using a db/db mouse model of type 2 diabetes and then identified the underlying mechanisms using Neuro2a cells. The expression of inflammatory cytokine mRNAs was increased in db/db and db/+ middle cerebral artery occlusion and reperfusion (MCAO/R) mice. Although NeuN-positive cells were decreased after MCAO/R, the number of NAMPT and NeuN double-positive cells in NeuN-positive neuronal cells increased in db/db MCAO/R mice. Next, the role of NAMPT in Neuro2a cells under conditions of high glucose (HGC) and oxygen-glucose deprivation (OGD), which mimics diabetes-complicated cerebral infarction, was examined. Treatment with P7C3-A20, a NAMPT activator, suppressed the decrease in cell viability caused by HGC/OGD; however, there were no significant differences in the levels of cleaved caspase-3 and Bax proteins. Moreover, increased FoxO3a and LC3-II levels after HGC/OGD were inhibited by P7C3-A20 treatment. Our findings indicate that NAMPT activation is associated with neuronal survival under ischemic conditions with abnormal glucose tolerance through the regulation of FoxO3a/LC3.


Assuntos
Isquemia Encefálica , Sobrevivência Celular , Proteína Forkhead Box O3 , Glucose , Neurônios , Nicotinamida Fosforribosiltransferase , Transdução de Sinais , Animais , Nicotinamida Fosforribosiltransferase/metabolismo , Proteína Forkhead Box O3/metabolismo , Glucose/metabolismo , Glucose/deficiência , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Masculino , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações
16.
Exp Neurol ; 371: 114584, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884188

RESUMO

Ischemic stroke in patients with abnormal glucose tolerance results in poor outcomes. Nicotinamide phosphoribosyltransferase (NAMPT), an adipocytokine, exerts neuroprotective effects. However, the pathophysiological role of NAMPT after ischemic stroke with diabetes and the relationship of NAMPT with cerebrovascular lesions are unclear. The purpose of this study was to clarify the pathophysiological role of NAMPT in cerebral ischemia with diabetes, using db/db mice as a type 2 diabetes animal model. The number of degenerating neurons increased after middle cerebral artery occlusion and reperfusion (MCAO/R) in db/db mice compared with the degenerating neurons in db/+ mice. Extracellular NAMPT (eNAMPT) levels, especially monomeric eNAMPT, increased significantly in db/db MCAO/R mice but not db/+ mice in isolated brain microvessels. The increased eNAMPT levels were associated with increased expression of inflammatory cytokine mRNA. Immunohistochemical analysis demonstrated that NAMPT colocalized with GFAP-positive cells after MCAO/R. In addition, both dimeric and monomeric eNAMPT levels increased in the conditioned medium of primary cortical astrocytes under high glucose conditions subsequent oxygen/glucose deprivation. Our findings are the first to demonstrate the ability of increased monomeric eNAMPT to induce inflammatory responses in brain microvessels, which may be located near astrocyte foot processes.


Assuntos
Diabetes Mellitus Tipo 2 , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Citocinas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Infarto da Artéria Cerebral Média/complicações , Nicotinamida Fosforribosiltransferase/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia
17.
Pathophysiology ; 31(1): 100-116, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38390945

RESUMO

Abnormal nucleotide insertions of C9orf72, which forms a complex with Smith-Magenis syndrome chromosomal region candidate gene 8 (SMCR8) protein and WD repeat-containing protein 41 (WDR41) protein, are associated with an autosomal-dominant neurodegenerative frontotemporal dementia and/or amyotrophic lateral sclerosis type 1 (FTDALS1). The differentially expressed in normal and neoplastic cells (DENN) domain-containing C9orf72 and its complex with SMCR8 and WDR41 function as a guanine-nucleotide exchange factor for Rab GTP/GDP-binding proteins (Rab GEF, also called Rab activator). Among Rab proteins serving as major effectors, there exists Rab11a. However, it remains to be established which Rab protein is related to promoting or sustaining neuronal morphogenesis or homeostasis. In this study, we describe that the knockdown of Rab11a decreases the expression levels of neuronal differentiation marker proteins, as well as the elongation of neurite-like processes, using N1E-115 cells, a well-utilized neuronal differentiation model. Similar results were obtained in primary cortical neurons. In contrast, the knockdown of Rab11b, a Rab11a homolog, did not significantly affect their cell morphological changes. It is of note that treatment with hesperetin, a citrus flavonoid (also known as Vitamin P), recovered the neuronal morphological phenotypes induced by Rab11a knockdown. Also, the knockdown of Rab11a or Rab11b led to a decrease in glial marker expression levels and in morphological changes in FBD-102b cells, which serve as the oligodendroglial differentiation model. Rab11a is specifically involved in the regulation of neuronal morphological differentiation. The knockdown effect mimicking the loss of function of C9orf72 is reversed by treatment with hesperetin. These findings may reveal a clue for identifying one of the potential molecular and cellular phenotypes underlying FTDALS1.

18.
J Pharmacol Sci ; 123(4): 336-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24285117

RESUMO

It is generally accepted that an increase in the myocardial level of heat-shock protein 72 (HSP72) protects viable cardiac tissue against myocardial infarction (MI)-induced stress. However, the induction of HSP72 after exposure to heat shock (HS) is blunted in the failing rat heart following MI. The mechanisms underlying this impairment in the HSP72 induction ability of the failing heart are not yet clearly defined. In the present study, we examined the involvement in heat-shock factor 1 (HSF1), a transcription factor of HSPs, in decreased ability for HSP72 induction in the failing rat heart following MI. In the failing heart, nuclear translocation of the HSF1 after exposure to hyperthermia was markedly reduced, whereas HSF1 in the cytosolic fraction and the HSP90 chaperone complex containing HSF1, a repressor of HSF1, were increased. Treatment with an HSP90 inhibitor, 17-allylamino-17-demethoxygel-danamycin, appeared to dissociate the interaction of HSF1 with HSP90, and then induced HSP72 in the failing heart after exposure to hyperthermia. These results suggest that an increase in the multichaperone complex, especially the HSF1-HSP90 interaction, associated with attenuation of HSF1 translocation into the nucleus, was involved in the impairment of HS-induced HSP72 induction in the failing heart following MI.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Choque Térmico HSP72/metabolismo , Proteínas de Choque Térmico HSP90/fisiologia , Insuficiência Cardíaca/metabolismo , Chaperonas Moleculares/fisiologia , Infarto do Miocárdio/metabolismo , Fatores de Transcrição/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Benzoquinonas/farmacologia , Proteínas de Ligação a DNA/metabolismo , Febre , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico , Lactamas Macrocíclicas/farmacologia , Masculino , Miocárdio/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Ratos Wistar , Fatores de Transcrição/metabolismo
19.
Biol Pharm Bull ; 36(8): 1332-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23902977

RESUMO

It is supposed that an increase in the level of heat shock protein 72 (HSP72) in the failing heart would be beneficial for reducing the myocardial damage. However, the induction of HSP72 after an exposure to heat shock is blunted in the failing rat heart following myocardial infarction. In this study, to clarify the possible mechanisms underlying this reduction in the ability for HSP72 induction in the failing heart, the possible involvement of heat-shock factor-1 (HSF1), an HSP transcription factor, in this reduction was examined. When hemodynamic parameters of rats with myocardial infarction 8 weeks after coronary artery ligation were measured, the animals showed the signs of chronic heart failure. The HSF1 content was increased in the viable myocardium in the failing heart. The ability to induce cardiac HSP72 was reduced after an exposure to hyperthermia. The level of HSF1 in the cytosolic fraction from the failing heart with or without exposure to hyperthermia was increased, whereas that of HSF1 in the nuclear fraction was reduced. In the failing heart, the level of HSF1 on its serine 303 (Ser303) residue, which phosphorylation represses HSF1, was increased. These findings suggest that HSF1 translocation from the cytosol into the nucleus was attenuated after an exposure to hyperthermia and that an increase in the phosphorylation of HSF1 Ser303 was involved in the impairment of heat shock-induced HSP72 induction in the failing heart following myocardial infarction.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Febre/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Febre/patologia , Febre/fisiopatologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Fatores de Transcrição de Choque Térmico , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Tamanho do Órgão , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Pressão Ventricular
20.
Biol Pharm Bull ; 36(4): 529-39, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23546289

RESUMO

The mechanisms underlying mitochondrial impairment in the failing heart are not yet clearly defined. In the present study, we examined the involvement of changes in small heat shock proteins (HSPs) such as HSPB1, HSPB5 and HSPB8 in mitochondrial dysfunction of the failing heart. Hemodynamic parameters of rats with myocardial infarction at the 2nd and 8th weeks (2W- and 8W-) after coronary artery ligation (CAL) were measured. The 8W-CAL rats, but not the 2W-CAL ones, showed the signs of the chronic heart failure concomitant with a reduced mitochondrial oxygen consumption rate. In the mitochondrial fraction prepared from the heart of the 2W-CAL animals, the contents of small HSPs and phosphorylated small HSPs were increased, suggesting that these increases contributed to the preservation of the mitochondrial energy-producing ability. In the failing heart, HSPB1 and HSPB8 contents and phosphorylated small HSP contents in the mitochondrial fraction were decreased, suggesting that a reduction in mitochondrial translocation of these small HSPs led to impaired mitochondrial energy-producing ability. To further define the submitochondrial locations of these small HSPs, we performed mitochondrial subfractionation. The contents of small HSPs in the 2W-CAL rats were increased in the mitochondrial inner-membrane fraction, whereas those of the 8W-CAL rats were reversed to those of the control animals. These findings suggest that small HSPs, at least in part, play an important role in the development of the impaired mitochondrial energy-producing ability that leads to heart failure after a myocardial infarction.


Assuntos
Cristalinas/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Vasos Coronários/cirurgia , Ventrículos do Coração , Ligadura , Masculino , Consumo de Oxigênio , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA