Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
RNA Biol ; 15(2): 261-268, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29168419

RESUMO

During the biogenesis of U1 small nuclear ribonucleoprotein, a small population of U1 snRNA molecules acquires an extra methylation at the first transcribed nucleotide and a nucleolytic cleavage to remove the 3' structured region including the Sm protein-binding site and stem-loop 4. These modifications occur before hypermethylation of the monomethylated 5' cap, whereby producing truncated forms of U1 snRNA (U1-tfs) that are diverted from the normal pathway to a processing body-associated degradation pathway. Here, we demonstrate that a small population of U2 snRNA molecules receives post-transcriptional modifications similar to those of U1 to yield U2-tfs. Like U1-tfs, U2-tfs molecules were produced from transcripts of the U2 snRNA gene having all cis-elements or lacking the 3' box. Unlike U1-tfs, however, a portion of U2-tfs received additional uridylylation of up to 5 nucleotides in length at position 87 (designated as U2-tfs-polyU) and formed an Sm protein-binding site-like structure that was stabilized by the small nuclear ribonucleoprotein SmB/B' probably as a part of heptameric Sm core complex that associates to the RNA. Both U2-tfs and U2-tfs-polyU were degraded by a nuclease distinct from the canonical Dis3L2 by a process catalyzed by terminal uridylyltransferase 7. Collectively, our data suggest that U2 snRNA biogenesis is regulated, at least in part, by a novel degradation pathway to ensure that defective U2 molecules are not incorporated into the spliceosome.


Assuntos
RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Linhagem Celular , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , RNA Nuclear Pequeno/genética , Ribonucleoproteínas Nucleares Pequenas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA