Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 17(3): 183-93, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26883003

RESUMO

The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors - octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) - initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular , Fatores de Transcrição , Animais , Técnicas de Reprogramação Celular/história , História do Século XXI , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
2.
Physiol Rev ; 99(1): 79-114, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30328784

RESUMO

The discovery of somatic cell nuclear transfer proved that somatic cells can carry the same genetic code as the zygote, and that activating parts of this code are sufficient to reprogram the cell to an early developmental state. The discovery of induced pluripotent stem cells (iPSCs) nearly half a century later provided a molecular mechanism for the reprogramming. The initial creation of iPSCs was accomplished by the ectopic expression of four specific genes (OCT4, KLF4, SOX2, and c-Myc; OSKM). iPSCs have since been acquired from a wide range of cell types and a wide range of species, suggesting a universal molecular mechanism. Furthermore, cells have been reprogrammed to iPSCs using a myriad of methods, although OSKM remains the gold standard. The sources for iPSCs are abundant compared with those for other pluripotent stem cells; thus the use of iPSCs to model the development of tissues, organs, and other systems of the body is increasing. iPSCs also, through the reprogramming of patient samples, are being used to model diseases. Moreover, in the 10 years since the first report, human iPSCs are already the basis for new cell therapies and drug discovery that have reached clinical application. In this review, we examine the generation of iPSCs and their application to disease and development.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Células-Tronco Pluripotentes/classificação , Animais , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Humanos , Fator 4 Semelhante a Kruppel
3.
Langmuir ; 40(16): 8483-8492, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38618876

RESUMO

Recombinant protein production is an essential aspect of biopharmaceutical manufacturing, with Escherichia coli serving as a primary host organism. Protein refolding is vital for protein production; however, conventional refolding methods face challenges such as scale-up limitations and difficulties in controlling protein conformational changes on a millisecond scale. In this study, we demonstrate the novel application of flow microreactors (FMR) in controlling protein conformational changes on a millisecond scale, enabling efficient refolding processes and opening up new avenues in the science of FMR technology. FMR technology has been primarily employed for small-molecule synthesis, but our novel approach successfully expands its application to protein refolding, offering precise control of the buffer pH and solvent content. Using interleukin-6 as a model, the system yielded an impressive 96% pure refolded protein and allowed for gram-scale production. This FMR system allows flash changes in the reaction conditions, effectively circumventing protein aggregation during refolding. To the best of our knowledge, this is the first study to use FMR for protein refolding, which offers a more efficient and scalable method for protein production. The study results highlight the utility of the FMR as a high-throughput screening tool for streamlined scale-up and emphasize the importance of understanding and controlling intermediates in the refolding process. The FMR technique offers a promising approach for enhancing protein refolding efficiency and has demonstrated its potential in streamlining the process from laboratory-scale research to industrial-scale production, making it a game-changing technology in the field.

4.
PLoS Genet ; 17(5): e1009587, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34033652

RESUMO

Human pluripotent stem cells (PSCs) express human endogenous retrovirus type-H (HERV-H), which exists as more than a thousand copies on the human genome and frequently produces chimeric transcripts as long-non-coding RNAs (lncRNAs) fused with downstream neighbor genes. Previous studies showed that HERV-H expression is required for the maintenance of PSC identity, and aberrant HERV-H expression attenuates neural differentiation potentials, however, little is known about the actual of function of HERV-H. In this study, we focused on ESRG, which is known as a PSC-related HERV-H-driven lncRNA. The global transcriptome data of various tissues and cell lines and quantitative expression analysis of PSCs showed that ESRG expression is much higher than other HERV-Hs and tightly silenced after differentiation. However, the loss of function by the complete excision of the entire ESRG gene body using a CRISPR/Cas9 platform revealed that ESRG is dispensable for the maintenance of the primed and naïve pluripotent states. The loss of ESRG hardly affected the global gene expression of PSCs or the differentiation potential toward trilineage. Differentiated cells derived from ESRG-deficient PSCs retained the potential to be reprogrammed into induced PSCs (iPSCs) by the forced expression of OCT3/4, SOX2, and KLF4. In conclusion, ESRG is dispensable for the maintenance and recapturing of human pluripotency.


Assuntos
Células-Tronco Pluripotentes/metabolismo , RNA Longo não Codificante/genética , Diferenciação Celular/genética , Células Cultivadas , Reprogramação Celular , Feminino , Inativação Gênica , Humanos , Fator 4 Semelhante a Kruppel , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/citologia
5.
Bioconjug Chem ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894324

RESUMO

The site-directed chemical conjugation of antibodies remains an area of great interest and active efforts within the antibody-drug conjugate (ADC) community. We previously reported a unique site modification using a class of immunoglobulin-G (IgG) Fc-affinity reagents to establish a versatile, streamlined, and site-selective conjugation of native antibodies to enhance the therapeutic index of the resultant ADCs. This methodology, termed "AJICAP", successfully modified Lys248 of native antibodies to produce site-specific ADC with a wider therapeutic index than the Food and Drug Administration-approved ADC, Kadcyla. However, the long reaction sequences, including the reduction-oxidation (redox) treatment, increased the aggregation level. In this manuscript, we aimed to present an updated Fc-affinity-mediated site-specific conjugation technology named "AJICAP second generation" without redox treatment utilizing a "one-pot" antibody modification reaction. The stability of Fc affinity reagents was improved owing to structural optimization, enabling the production of various ADCs without aggregation. In addition to Lys248 conjugation, Lys288 conjugated ADCs with homogeneous drug-to-antibody ratio of 2 were produced using different Fc affinity peptide reagent possessing a proper spacer linkage. These two conjugation technologies were used to produce over 20 ADCs from several combinations of antibodies and drug linkers. The in vivo profile of Lys248 and Lys288 conjugated ADCs was also compared. Furthermore, nontraditional ADC production, such as antibody-protein conjugates and antibody-oligonucleotide conjugates, were achieved. These results strongly indicate that this Fc affinity conjugation approach is a promising strategy for manufacturing site-specific antibody conjugates without antibody engineering.

6.
Anal Bioanal Chem ; 415(26): 6461-6469, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37702772

RESUMO

Tag-free protein modification has received considerable attention in the field of chemical biology owing to the versatility and simplicity of the reaction sequence. In 2021, a novel tag-free enzymatic modification of antibodies utilizing lipoate ligase A (LplA) was reported to reveal its potential in the production of site-specific antibody conjugates. Primary peptide mapping analysis revealed the biased site specificity of antibodies modified by LplA; however, quantitative analysis remains challenging because of the complicated heterogeneity derived from biased selective modification. In an effort to further understand the site occupancy of LplA-modified antibodies, this study employed numerous unconventional techniques and strategies. Optimization of HPLC conditions and utilization of enzymes such as trypsin, Glu-C, and chymotrypsin significantly increased sequence data coverage. The transition from traditional spectral counting to a more accurate peak area-based label-free quantification helped better analyze peptide modification levels. The results obtained indicate that LplA-induced modifications are specific lysines, particularly the light chain Lys188/190 site, which have an increased modification rate compared to chemically induced modifications. This study not only contributes to the understanding of peptide modification, but also presents an improved methodology that promises to stimulate further research in this field.

7.
Mol Pharm ; 18(11): 4058-4066, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34579528

RESUMO

To overcome a lack of selectivity during the chemical modification of native non-engineered antibodies, we have developed a technology platform termed "AJICAP" for the site-specific chemical conjugation of antibodies through the use of a class of IgG Fc-affinity reagents. To date, a limited number of antibody-drug conjugates (ADCs) have been synthesized via this approach, and no toxicological study was reported. Herein, we describe the compatibility and robustness of AJICAP technology, which enabled the synthesis of a wide variety of ADCs. A stability assessment of a thiol-modified antibody synthesized by AJICAP technology indicated no appreciable increase in aggregation or decomposition upon prolonged storage, indicating that the unexpectedly stable thiol intermediate has a great potential intermediate for payload or linker screening or large-scale manufacturing. Payload conjugation with this stable thiol intermediate generated several AJICAP-ADCs. In vivo xenograft studies indicated that the AJICAP-ADCs displayed significant tumor inhibition comparable to benchmark ADC Kadcyla. Furthermore, a rat pharmacokinetic analysis and toxicology study indicated an increase in the maximum tolerated dose, demonstrating an expansion of the AJICAP-ADC therapeutic index, compared with stochastic conjugation technology. This is the first report of the therapeutic index estimation of site-specific ADCs produced by utilizing Fc affinity reagent conjugation. The described site-specific conjugation technology is a powerful platform to enable next-generation ADCs through reduced heterogeneity and enhanced therapeutic index.


Assuntos
Antineoplásicos/farmacocinética , Composição de Medicamentos/métodos , Imunoconjugados/farmacocinética , Neoplasias/tratamento farmacológico , Ado-Trastuzumab Emtansina/administração & dosagem , Ado-Trastuzumab Emtansina/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/toxicidade , Química Farmacêutica , Estabilidade de Medicamentos , Feminino , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Imunoconjugados/toxicidade , Dose Máxima Tolerável , Camundongos , Neoplasias/patologia , Ratos , Índice Terapêutico , Testes de Toxicidade Aguda , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Bioorg Med Chem Lett ; 51: 128360, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537330

RESUMO

Bioconjugation is an important chemical biology research focus, especially in the development of methods to produce pharmaceutical bioconjugates and antibody-drug conjugates (ADCs). In this report, an enzyme-catalyzed conjugation method combined with a chemical reaction was used to modify a native antibody under mild reaction conditions. Our investigation revealed that lipoic-acid ligase (LplA) modifies native IgG1 with biased site-specificity. An intact mass analysis revealed that 98.3% of IgG1 was modified by LplA and possessed at least one molecule of octanocic acid. The average number of modifications per antibody was calculated to be 4.6. Peptide mapping analysis revealed that the modified residues were K225, K249 and K363 in the Fc region, and K30, K76 and K136 in the heavy chain and K39/K42, K169, K188 and K190 in the light chain of the Fab region. Careful evaluation including solvent exposed amino acid analysis suggested that these conjugate sites were not only solvent exposed but also biased by the site-specificity of LplA. Furthermore, antibody fragment conjugation may be able to take advantage of this enzymatic approach. This feasibility study serves as a demonstration for preparing enzymatically modified antibodies with conjugation site analysis.


Assuntos
Imunoconjugados/química , Imunoglobulina G/química , Ligases/química , Ácido Tióctico/química , Humanos , Imunoconjugados/imunologia , Imunoglobulina G/imunologia , Ligases/imunologia , Estrutura Molecular , Ácido Tióctico/imunologia
9.
RNA Biol ; 18(8): 1193-1205, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33211605

RESUMO

Colicin D is a plasmid-encoded bacteriocin that specifically cleaves tRNAArg of sensitive Escherichia coli cells. E. coli has four isoaccepting tRNAArgs; the cleavage occurs at the 3' end of anticodon-loop, leading to translation impairment in the sensitive cells. tRNAs form a common L-shaped structure and have many conserved nucleotides that limit tRNA identity elements. How colicin D selects tRNAArgs from the tRNA pool of sensitive E. coli cells is therefore intriguing. Here, we reveal the recognition mechanism of colicin D via biochemical analyses as well as structural modelling. Colicin D recognizes tRNAArgICG, the most abundant species of E. coli tRNAArgs, at its anticodon-loop and D-arm, and selects it as the most preferred substrate by distinguishing its anticodon-loop sequence from that of others. It has been assumed that translation impairment is caused by a decrease in intact tRNA molecules due to cleavage. However, we found that intracellular levels of intact tRNAArgICG do not determine the viability of sensitive cells after such cleavage; rather, an accumulation of cleaved ones does. Cleaved tRNAArgICG dominant-negatively impairs translation in vitro. Moreover, we revealed that EF-Tu, which is required for the delivery of tRNAs, does not compete with colicin D for binding tRNAArgICG, which is consistent with our structural model. Finally, elevation of cleaved tRNAArgICG level decreases the viability of sensitive cells. These results suggest that cleaved tRNAArgICG transiently occupies ribosomal A-site in an EF-Tu-dependent manner, leading to translation impairment. The strategy should also be applicable to other tRNA-targeting RNases, as they, too, recognize anticodon-loops.Abbreviations: mnm5U: 5-methylaminomethyluridine; mcm5s2U: 5-methoxycarbonylmethyl-2-thiouridine.


Assuntos
Bacteriocinas/química , Colicinas/química , Escherichia coli/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/química , RNA de Transferência de Arginina/química , Ribossomos/metabolismo , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Pareamento de Bases , Sítios de Ligação , Colicinas/genética , Colicinas/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência de Arginina/genética , RNA de Transferência de Arginina/metabolismo , Ribossomos/genética , Especificidade por Substrato , Tiouridina/análogos & derivados , Tiouridina/metabolismo , Uridina/análogos & derivados , Uridina/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(2): 340-345, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28003464

RESUMO

Novel APOBEC1 target 1 (Nat1) (also known as "p97," "Dap5," and "Eif4g2") is a ubiquitously expressed cytoplasmic protein that is homologous to the C-terminal two thirds of eukaryotic translation initiation factor 4G (Eif4g1). We previously showed that Nat1-null mouse embryonic stem cells (mES cells) are resistant to differentiation. In the current study, we found that NAT1 and eIF4G1 share many binding proteins, such as the eukaryotic translation initiation factors eIF3 and eIF4A and ribosomal proteins. However, NAT1 did not bind to eIF4E or poly(A)-binding proteins, which are critical for cap-dependent translation initiation. In contrast, compared with eIF4G1, NAT1 preferentially interacted with eIF2, fragile X mental retardation proteins (FMR), and related proteins and especially with members of the proline-rich and coiled-coil-containing protein 2 (PRRC2) family. We also found that Nat1-null mES cells possess a transcriptional profile similar, although not identical, to the ground state, which is established in wild-type mES cells when treated with inhibitors of the ERK and glycogen synthase kinase 3 (GSK3) signaling pathways. In Nat1-null mES cells, the ERK pathway is suppressed even without inhibitors. Ribosome profiling revealed that translation of mitogen-activated protein kinase kinase kinase 3 (Map3k3) and son of sevenless homolog 1 (Sos1) is suppressed in the absence of Nat1 Forced expression of Map3k3 induced differentiation of Nat1-null mES cells. These data collectively show that Nat1 is involved in the translation of proteins that are required for cell differentiation.


Assuntos
Arilamina N-Acetiltransferase/metabolismo , Diferenciação Celular/fisiologia , Isoenzimas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/fisiologia , Biossíntese de Proteínas/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Fator de Iniciação Eucariótico 4G/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Ligação Proteica/fisiologia , Ribossomos/metabolismo , Proteína SOS1/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia
11.
Anal Biochem ; 587: 113447, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31562850

RESUMO

Glycine analysis is important in research fields such as physiology and healthcare because the concentration of glycine in human plasma has been reported to change with various disorders. Glycine oxidase from Bacillus subtilis (GlyOX) is useful for quantitative analysis of glycine. However, GlyOX is not sufficiently stable for use in physiology-based research or clinical settings. In this report, site-directed mutagenesis was used to engineer a GlyOX mutant suitable for glycine analysis. The GlyOX triple-mutant (T42 A/C245 S/L301V) retained most of its enzymatic activity during storage for over a year at 4 °C. A colorimetric enzyme analysis protocol was established using the GlyOX triple-mutant to determine glycine concentrations in human plasma. The analysis showed high accuracy (-5.4 to 3.5% relative errors when compared with the results from an amino acid analyzer, and 96.0-98.7% recoveries) and high precision (<4% between-run variation). Sample pretreatments of deproteinization and derivatization were not required. Therefore, this novel enzymatic analysis offers an effective and useful method for determining glycine concentrations in physiology related research and the healthcare field.


Assuntos
Aminoácido Oxirredutases/genética , Análise Química do Sangue , Colorimetria , Glicina/sangue , Aminoácido Oxirredutases/metabolismo , Engenharia Genética , Humanos , Mutação
12.
Development ; 142(19): 3274-85, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26443632

RESUMO

During development, cells transition from a pluripotent to a differentiated state, generating all the different types of cells in the body. Development is generally considered an irreversible process, meaning that a differentiated cell is thought to be unable to return to the pluripotent state. However, it is now possible to reprogram mature cells to pluripotency. It is generally thought that reprogramming is accomplished by reversing the natural developmental differentiation process, suggesting that the two mechanisms are closely related. Therefore, a detailed study of cell reprogramming has the potential to shed light on unexplained developmental mechanisms and, conversely, a better understanding of developmental differentiation can help improve cell reprogramming. However, fundamental differences between reprogramming processes and multi-lineage specification during early embryonic development have also been uncovered. In addition, there are multiple routes by which differentiated cells can re-enter the pluripotent state. In this Review, we discuss the connections and disparities between differentiation and reprogramming, and assess the degree to which reprogramming can be considered as a simple reversal of development.


Assuntos
Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , MicroRNAs/genética , Modelos Biológicos , Humanos
13.
Phys Chem Chem Phys ; 20(2): 1114-1126, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29239429

RESUMO

We investigated the electronic states of α-sexithiophene (α-6T) on by means of angle-resolved photoelectron spectroscopy using synchrotron radiation. The characteristic features of π states are observed in the valence region. The increase in the population of the S1 band, assigned to the surface state of , upon deposition of α-6T was measured and the change in the electron density was evaluated. The band diagram was constructed based on the measurement of the HOMO level and work function. The work function was found to change with the α-6T thickness in a characteristic manner. We constructed a model of the electron transfer at each growth stage based on the core levels of the substrate (Si 2p, Ag 3d) and α-6T molecule (C 1s, S 2p), as well as the valence state and work function change.

14.
Proc Natl Acad Sci U S A ; 111(34): 12426-31, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25097266

RESUMO

Pluripotency can be induced in somatic cells by overexpressing transcription factors, including POU class 5 homeobox 1 (OCT3/4), sex determining region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4), and myelocytomatosis oncogene (c-MYC). However, some induced pluripotent stem cells (iPSCs) exhibit defective differentiation and inappropriate maintenance of pluripotency features. Here we show that dynamic regulation of human endogenous retroviruses (HERVs) is important in the reprogramming process toward iPSCs, and in re-establishment of differentiation potential. During reprogramming, OCT3/4, SOX2, and KLF4 transiently hyperactivated LTR7s--the long-terminal repeats of HERV type-H (HERV-H)--to levels much higher than in embryonic stem cells by direct occupation of LTR7 sites genome-wide. Knocking down LTR7s or long intergenic non-protein coding RNA, regulator of reprogramming (lincRNA-RoR), a HERV-H-driven long noncoding RNA, early in reprogramming markedly reduced the efficiency of iPSC generation. KLF4 and LTR7 expression decreased to levels comparable with embryonic stem cells once reprogramming was complete, but failure to resuppress KLF4 and LTR7s resulted in defective differentiation. We also observed defective differentiation and LTR7 activation when iPSCs had forced expression of KLF4. However, when aberrantly expressed KLF4 or LTR7s were suppressed in defective iPSCs, normal differentiation was restored. Thus, a major mechanism by which OCT3/4, SOX2, and KLF4 promote human iPSC generation and reestablish potential for differentiation is by dynamically regulating HERV-H LTR7s.


Assuntos
Retrovirus Endógenos/genética , Retrovirus Endógenos/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/virologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/virologia , Epigênese Genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/virologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/fisiologia , Células-Tronco Pluripotentes/fisiologia , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Viral/antagonistas & inibidores , RNA Viral/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/fisiologia
15.
Development ; 140(12): 2457-61, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23715538

RESUMO

Differentiated cells can be reprogrammed to pluripotency and other cell fates by treatment with defined factors. The discovery of induced pluripotent stem cells (iPSCs) has opened up unprecedented opportunities in the pharmaceutical industry, in the clinic and in laboratories. In particular, the medical applications of human iPSCs in disease modeling and stem cell therapy have been progressing rapidly. The ability to induce cell fate conversion is attractive not only for these applications, but also for basic research fields, such as development, cancer, epigenetics and aging.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Diferenciação Celular , Linhagem da Célula , Epigênese Genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Medicina , Oócitos/citologia , Oócitos/metabolismo , Fatores de Risco , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
16.
Proc Natl Acad Sci U S A ; 110(30): 12172-9, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23812749

RESUMO

Pluripotency can be induced in somatic cells by forced expression of POU domain, class 5, transcription factor 1 (OCT3/4), sex determining region Y-box 2 (SOX2), Kruppel-like factor 4 (KLF4), myelocytomatosis oncogene (c-MYC) (OSKM). However, factor-mediated direct reprogramming is generally regarded as an inefficient and stochastic event. Contrary to this notion, we herein demonstrate that most human adult dermal fibroblasts initiated the reprogramming process on receiving the OSKM transgenes. Within 7 d, ~20% of these transduced cells became positive for the TRA-1-60 antigen, one of the most specific markers of human pluripotent stem cells. However, only a small portion (~1%) of these nascent reprogrammed cells resulted in colonies of induced pluripotent stem cells after replating. We found that many of the TRA-1-60-positive cells turned back to be negative again during the subsequent culture. Among the factors that have previously been reported to enhance direct reprogramming, LIN28, but not Nanog homeobox (NANOG), Cyclin D1, or p53 shRNA, significantly inhibited the reversion of reprogramming. These data demonstrate that maturation, and not initiation, is the limiting step during the direct reprogramming of human fibroblasts toward pluripotency and that each proreprogramming factor has a different mode of action.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , Células-Tronco Pluripotentes/citologia , Humanos , Fator 4 Semelhante a Kruppel
17.
Proc Natl Acad Sci U S A ; 110(51): 20569-74, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24259714

RESUMO

We examined the gene expression and DNA methylation of 49 human induced pluripotent stem cells (hiPSCs) and 10 human embryonic stem cells and found overlapped variations in gene expression and DNA methylation in the two types of human pluripotent stem cell lines. Comparisons of the in vitro neural differentiation of 40 hiPSCs and 10 human embryonic stem cells showed that seven hiPSC clones retained a significant number of undifferentiated cells even after neural differentiation culture and formed teratoma when transplanted into mouse brains. These differentiation-defective hiPSC clones were marked by higher expression levels of several genes, including those expressed from long terminal repeats of specific human endogenous retroviruses. These data demonstrated a subset of hiPSC lines that have aberrant gene expression and defective potential in neural differentiation, which need to be identified and eliminated before applications in regenerative medicine.


Assuntos
Diferenciação Celular , Metilação de DNA , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Teratoma/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Jurkat , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Tecido Nervoso/metabolismo , Tecido Nervoso/patologia , Células-Tronco Pluripotentes/patologia , Teratoma/patologia
18.
Microbiology (Reading) ; 161(10): 2019-2028, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26199088

RESUMO

RNAs, such as mRNA, rRNA and tRNA, are essential macromolecules for cell survival and maintenance. Any perturbation of these molecules, such as by degradation or mutation, can be toxic to cells and may occasionally induce cell death. Therefore, cells have mechanisms known as quality control systems to eliminate abnormal RNAs. Although tRNA is a stable molecule, the anticodon loop is quite susceptible to tRNA-targeting RNases such as colicin E5 and colicin D. However, the mechanism underlying cellular reaction to tRNA cleavage remains unclear. It had long been believed that tRNA cleavage by colicins E5 and D promptly induces cell death because colony formation of the sensitive cells is severely reduced; this indicates that cells do not resist the tRNA cleavage. Here, we show that Escherichia coli cells enter a bacteriostatic state against the tRNA cleavage of colicins D and E5. The bacteriostasis requires small protein B (SmpB) and transfer-messenger RNA (tmRNA), which are known to mediate trans-translation. Furthermore, another type of colicin, colicin E3 cleaving rRNA, immediately reduces the viability of sensitive cells. Moreover, nascent peptide degradation has an additive effect on bacteriostasis. Considering the recent observation that tRNA cleavage may be used as a means of cell-to-cell communication, tRNA cleavage could be used by bacteria not only to dominate other bacteria living in the same niche, but also to regulate growth of their own or other cells.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/metabolismo , Colicinas/metabolismo , Hidrólise , Viabilidade Microbiana
19.
Nature ; 460(7259): 1132-5, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19668191

RESUMO

Induced pluripotent stem (iPS) cells can be generated from somatic cells by the introduction of Oct3/4 (also known as Pou5f1), Sox2, Klf4 and c-Myc, in mouse and in human. The efficiency of this process, however, is low. Pluripotency can be induced without c-Myc, but with even lower efficiency. A p53 (also known as TP53 in humans and Trp53 in mice) short-interfering RNA (siRNA) was recently shown to promote human iPS cell generation, but the specificity and mechanisms remain to be determined. Here we report that up to 10% of transduced mouse embryonic fibroblasts lacking p53 became iPS cells, even without the Myc retrovirus. The p53 deletion also promoted the induction of integration-free mouse iPS cells with plasmid transfection. Furthermore, in the p53-null background, iPS cells were generated from terminally differentiated T lymphocytes. The suppression of p53 also increased the efficiency of human iPS cell generation. DNA microarray analyses identified 34 p53-regulated genes that are common in mouse and human fibroblasts. Functional analyses of these genes demonstrate that the p53-p21 pathway serves as a barrier not only in tumorigenicity, but also in iPS cell generation.


Assuntos
Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adulto , Animais , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Embrião de Mamíferos/citologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Inativação Gênica , Genes myc , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/genética , Linfócitos T/citologia , Transfecção , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
20.
J Cell Sci ; 125(Pt 11): 2553-60, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22736045

RESUMO

During development, cell fate is specified precisely through programming by multiple complex elements and processes, including chromatin modifications that result in epigenetic marks. Once determined, cell fate is specified further only through maturation processes, which include differentiation and senescence. However, recent studies have shown that it is possible to influence cell fate through artificial manipulation. For example, the exogenous expression of a set of transcription factors can result in the reprogramming of differentiated skin fibroblasts to a pluripotent state. In addition, recent reports have demonstrated the directed reprogramming of one type of differentiated somatic cell to another type of differentiated somatic cell, without rejuvenation to a pluripotent state. Reprogramming factors blur the boundaries between different cell fates, which can never meet, as if the hierarchy were flattened by 'lowering gravity'. Although attempts to use direct reprogramming to generate certain cell types, such as those found in the kidneys and the lungs, have remained unsuccessful, recent advances suggest that we are nearing the identification of determinants that allow cells to be directly reprogrammed into cell types from all organs in the not too distant future. This Commentary summarises our current knowledge on cellular reprogramming, and more specifically, recent advances in direct reprogramming to generate a variety of cell types.


Assuntos
Reprogramação Celular/genética , Epigênese Genética , Animais , Linhagem da Célula/genética , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA