Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105513, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042483

RESUMO

α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.


Assuntos
Fucose , Inflamação , Lipopolissacarídeos , Animais , Humanos , Camundongos , Receptor gp130 de Citocina , Fucose/farmacologia , Fucose/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias , RNA Mensageiro
2.
Genes Cells ; 26(7): 474-484, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33864419

RESUMO

Lymphatic recanalization failure after lymphadenectomy constitutes a major risk of lymphedema in cancer surgery. It has been reported that GATA2, a zinc finger transcription factor, is expressed in lymphatic endothelial cells and is involved in the development of fetal lymphatic vessels. GATA3, another member of the GATA family of transcription factors, is required for the differentiation of lymphoid tissue inducer (LTi) cells and is essential for lymph node formation. However, how GATA2 and GATA3 function in recanalization after the surgical extirpation of lymphatic vessels has not been elucidated. Employing a new model of lymphatic recanalization, we examined the lymphatic reconnection process in Gata2 heterozygous deficient (Gata2+/- ) and Gata3 heterozygous deficient (Gata3+/- ) mice. We found that lymphatic recanalization was significantly impaired in Gata2+/- mice, while Gata3+/- mice rarely showed such abnormalities. Notably, the perturbed lymphatic recanalization in the Gata2+/- mice was partially restored by crossing with the Gata3+/- mice. Our results demonstrate for the first time that GATA2 participates in the regeneration of damaged lymphatic vessels and the unexpected suppressive activity of GATA3 against lymphatic recanalization processes.


Assuntos
Fator de Transcrição GATA2/metabolismo , Excisão de Linfonodo/efeitos adversos , Vasos Linfáticos/metabolismo , Linfedema/metabolismo , Complicações Pós-Operatórias/metabolismo , Animais , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Heterozigoto , Vasos Linfáticos/fisiologia , Linfedema/etiologia , Camundongos , Complicações Pós-Operatórias/etiologia , Regeneração
3.
Genes Cells ; 25(7): 443-449, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32394600

RESUMO

Histamine is a bioactive monoamine that is synthesized by the enzymatic activity of histidine decarboxylase (HDC) in basophils, mast cells, gastric enterochromaffin-like (ECL) cells and histaminergic neuronal cells. Upon a series of cellular stimuli, these cells release stored histamine, which elicits allergies, inflammation, and gastric acid secretion and regulates neuronal activity. Recent studies have shown that certain other types of myeloid lineage cells also produce histamine with HDC induction under various pathogenic stimuli. Histamine has been shown to play a series of pathophysiological roles by modulating immune and inflammatory responses in a number of disease conditions, whereas the mechanistic aspects underlying induced HDC expression remain elusive. In the present review, we summarize the current understanding of the regulatory mechanism of Hdc gene expression and the roles played by histamine in physiological contexts as well as pathogenic processes. We also introduce a newly developed histaminergic cell-monitoring transgenic mouse line (Hdc-BAC-GFP) that serves as a valuable experimental tool to identify the source of histamine and dissect upstream regulatory signals.


Assuntos
Histamina/metabolismo , Histidina Descarboxilase/metabolismo , Receptores Histamínicos/metabolismo , Sepse/imunologia , Animais , Cromossomos Artificiais Bacterianos , Regulação Enzimológica da Expressão Gênica/imunologia , Histamina/fisiologia , Histidina Descarboxilase/genética , Histonas/metabolismo , Metilação , Camundongos , Camundongos Transgênicos , Células Mieloides/metabolismo , Sepse/metabolismo
4.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445350

RESUMO

Following an intraventricular hemorrhage (IVH), red blood cell lysis and hemoglobin (Hb) oxidation with the release of heme can cause sterile neuroinflammation. In this study, we measured Hb derivates and cellular adhesion molecules ICAM-1 and VCAM-1 with cell-free miRNAs in cerebrospinal fluid (CSF) samples obtained from Grade-III and Grade-IV preterm IVH infants (IVH-III and IVH-IV, respectively) at multiple time points between days 0-60 after the onset of IVH. Furthermore, human choroid plexus epithelial cells (HCPEpiCs) were incubated with IVH and non-IVH CSF (10 v/v %) for 24 h in vitro to investigate the IVH-induced inflammatory response that was investigated via: (i) HMOX1, IL8, VCAM1, and ICAM1 mRNAs as well as miR-155, miR-223, and miR-181b levels by RT-qPCR; (ii) nuclear translocation of the NF-κB p65 subunit by fluorescence microscopy; and (iii) reactive oxygen species (ROS) measurement. We found a time-dependent alteration of heme, IL-8, and adhesion molecules which revealed a prolonged elevation in IVH-IV vs. IVH-III with higher miR-155 and miR-181b expression at days 41-60. Exposure of HCPEpiCs to IVH CSF samples induced HMOX1, IL8, and ICAM1 mRNA levels along with increased ROS production via the NF-κB pathway activation but without cell death, as confirmed by the cell viability assay. Additionally, the enhanced intracellular miR-155 level was accompanied by lower miR-223 and miR-181b expression in HCPEpiCs after CSF treatment. Overall, choroid plexus epithelial cells exhibit an abnormal cell phenotype after interaction with pro-inflammatory CSF of IVH origin which may contribute to the development of later clinical complications in preterm IVH.


Assuntos
Hemorragia Cerebral/patologia , Plexo Corióideo/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/patologia , Proteína C-Reativa/líquido cefalorraquidiano , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Hemorragia Cerebral/complicações , Hemorragia Cerebral/congênito , Hemorragia Cerebral/metabolismo , Plexo Corióideo/patologia , Estudos de Coortes , Citocinas/líquido cefalorraquidiano , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Heme/metabolismo , Hemoglobinas/metabolismo , Humanos , Hungria , Recém-Nascido , Recém-Nascido Prematuro , Molécula 1 de Adesão Intercelular/líquido cefalorraquidiano , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Síndrome de Resposta Inflamatória Sistêmica/congênito , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Molécula 1 de Adesão de Célula Vascular/líquido cefalorraquidiano , Molécula 1 de Adesão de Célula Vascular/metabolismo
5.
Genes Cells ; 24(8): 534-545, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31141264

RESUMO

Zinc-finger transcription factors GATA2 and GATA3 are both expressed in the developing inner ear, although their overlapping versus distinct activities in adult definitive inner ear are not well understood. We show here that GATA2 and GATA3 are co-expressed in cochlear spiral ganglion cells and redundantly function in the maintenance of spiral ganglion cells and auditory neural circuitry. Notably, Gata2 and Gata3 compound heterozygous mutant mice had a diminished number of spiral ganglion cells due to enhanced apoptosis, which resulted in progressive hearing loss. The decrease in spiral ganglion cellularity was associated with lowered expression of neurotrophin receptor TrkC that is an essential factor for spiral ganglion cell survival. We further show that Gata2 null mutants that additionally bear a Gata2 YAC (yeast artificial chromosome) that counteracts the lethal hematopoietic deficiency due to complete Gata2 loss nonetheless failed to complement the deficiency in neonatal spiral ganglion neurons. Furthermore, cochlea-specific Gata2 deletion mice also had fewer spiral ganglion cells and resultant hearing impairment. These results show that GATA2 and GATA3 redundantly function to maintain spiral ganglion cells and hearing. We propose possible mechanisms underlying hearing loss in human GATA2- or GATA3-related genetic disorders.


Assuntos
Surdez/etiologia , Fatores de Transcrição GATA/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Animais , Apoptose/genética , Contagem de Células , Cóclea/metabolismo , Cóclea/patologia , Surdez/metabolismo , Surdez/fisiopatologia , Modelos Animais de Doenças , Fatores de Transcrição GATA/genética , Expressão Gênica , Genes Reporter , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Gânglio Espiral da Cóclea/patologia
6.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961661

RESUMO

Intraventricular hemorrhage (IVH) represents a high risk of neonatal mortality and later neurodevelopmental impairment in prematurity. IVH is accompanied with inflammation, hemolysis, and extracellular hemoglobin (Hb) oxidation. However, microRNA (miRNA) expression in cerebrospinal fluid (CSF) of preterm infants with IVH has been unknown. Therefore, in the present study, candidate pro-inflammatory cell-free miRNAs were analyzed in CSF samples from 47 preterm infants with grade III or IV IVH vs. clinical controls (n = 14). miRNAs were quantified by RT-qPCR, normalized to "spike-in" cel-miR-39. Oxidized Hb and total heme levels were determined by spectrophotometry as well as IL-8, VCAM-1, ICAM-1, and E-selectin concentrations by ELISA. To reveal the origin of the investigated miRNAs, controlled hemolysis experiments were performed in vitro; in addition, human choroid plexus epithelial cell (HCPEpiC) cultures were treated with metHb, ferrylHb, heme, or TNF-α to replicate IVH-triggered cellular conditions. Levels of miR-223, miR-155, miR-181b, and miR-126 as well as Hb metabolites along with IL-8 were elevated in CSF after the onset of IVH vs. controls. Significant correlations were observed among the miRNAs, oxidized Hb forms, and the soluble adhesion molecules. During the post-IVH follow-up, attenuated expression of miRNAs and protein biomarkers in CSF was observed upon elimination of Hb metabolites. These miRNAs remained unaffected by a series of artificially induced hemolysis, which excluded red blood cells as their origin, while stimulation of HCPEpiCs with oxidized Hb fractions and heme resulted in increased extracellular miRNA levels in the cell culture supernatant. Overall, the hemorrhage-induced CSF miRNAs reflected inflammatory conditions as potential biomarkers in preterm IVH.


Assuntos
Hemorragia Cerebral/líquido cefalorraquidiano , Doenças do Recém-Nascido/líquido cefalorraquidiano , Recém-Nascido Prematuro/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Linhagem Celular , MicroRNA Circulante , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
7.
Blood ; 122(20): 3450-60, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24021675

RESUMO

GATA1 is a master regulator of hematopoietic differentiation, but Gata1 expression is inactivated in hematopoietic stem cells (HSCs). Using a bacterial artificial chromosome containing the Gata1 gene modified with green fluorescent protein (GFP) reporter, we explored the function of the 3.7-kb Gata1 upstream region (GdC region) that harbors 3 core cis-elements: Gata1 hematopoietic enhancer, double GATA-motif, and CACCC-motif. Transgenic GFP expression directed by the Gata1-BAC faithfully recapitulated the endogenous Gata1 expression pattern. However, deletion of the GdC-region eliminated reporter expression in all hematopoietic cells. To test whether the combination of the core cis-elements represents the regulatory function of the GdC-region, we replaced the region with a 659-bp minigene that linked the three cis-elements (MG-GFP). The GFP reporter expression directed by the MG-GFP BAC fully recapitulated the erythroid-megakaryocytic Gata1 expression. However, the GFP expression was aberrantly increased in the HSCs and was associated with decreases in DNA methylation and abundant GATA2 binding to the transgenic MG-GFP allele. The 3.2-kb sequences interspaced between the Gata1 hematopoietic enhancer and the double GATA-motif were able to recruit DNA methyltransferase 1, thereby exerting a cis-repressive function in the HSC-like cell line. These results indicate that the 3.2-kb interspacing sequences inactivate Gata1 by maintaining DNA-methylation in the HSCs.


Assuntos
Células Eritroides/metabolismo , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Hematopoéticas/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Linhagem da Célula , Células Cultivadas/metabolismo , Cromossomos Artificiais Bacterianos , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Elementos Facilitadores Genéticos/genética , Eritropoese/genética , Fator de Transcrição GATA1/fisiologia , Fator de Transcrição GATA2/metabolismo , Inativação Gênica , Genes Reporter , Genes Sintéticos , Fígado/citologia , Fígado/embriologia , Megacariócitos/metabolismo , Camundongos , Camundongos Transgênicos , Motivos de Nucleotídeos/genética , Deleção de Sequência , Ativação Transcricional/genética
8.
J Biol Chem ; 288(22): 15843-53, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23609438

RESUMO

The intermediate conductance calcium-activated potassium channel KCa3.1 contributes to a variety of cell activation processes in pathologies such as inflammation, carcinogenesis, and vascular remodeling. We examined the electrophysiological and transcriptional mechanisms by which KCa3.1 regulates vascular smooth muscle cell (VSMC) proliferation. Platelet-derived growth factor-BB (PDGF)-induced proliferation of human coronary artery VSMCs was attenuated by lowering intracellular Ca(2+) concentration ([Ca(2+)]i) and was enhanced by elevating [Ca(2+)]i. KCa3.1 blockade or knockdown inhibited proliferation by suppressing the rise in [Ca(2+)]i and attenuating the expression of phosphorylated cAMP-response element-binding protein (CREB), c-Fos, and neuron-derived orphan receptor-1 (NOR-1). This antiproliferative effect was abolished by elevating [Ca(2+)]i. KCa3.1 overexpression induced VSMC proliferation, and potentiated PDGF-induced proliferation, by inducing CREB phosphorylation, c-Fos, and NOR-1. Pharmacological stimulation of KCa3.1 unexpectedly suppressed proliferation by abolishing the expression and activity of KCa3.1 and PDGF ß-receptors and inhibiting the rise in [Ca(2+)]i. The stimulation also attenuated the levels of phosphorylated CREB, c-Fos, and cyclin expression. After KCa3.1 blockade, the characteristic round shape of VSMCs expressing high l-caldesmon and low calponin-1 (dedifferentiation state) was maintained, whereas KCa3.1 stimulation induced a spindle-shaped cellular appearance, with low l-caldesmon and high calponin-1. In conclusion, KCa3.1 plays an important role in VSMC proliferation via controlling Ca(2+)-dependent signaling pathways, and its modulation may therefore constitute a new therapeutic target for cell proliferative diseases such as atherosclerosis.


Assuntos
Sinalização do Cálcio/fisiologia , Proliferação de Células , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Indutores da Angiogênese/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Becaplermina , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Calponinas
9.
Genes Cells ; 18(11): 921-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23911012

RESUMO

Transcription factor GATA2 is highly expressed in hematopoietic stem cells and progenitors, whereas its expression declines after erythroid commitment of progenitors. In contrast, the start of GATA1 expression coincides with the erythroid commitment and increases along with the erythroid differentiation. We refer this dynamic transition of GATA factor expression to as the 'GATA factor switching'. Here, we examined contribution of the GATA factor switching to the erythroid differentiation. In Gata1-knockdown embryos that concomitantly express Gata2-GFP reporter, high-level expression of GFP reporter was detected in accumulated immature hematopoietic cells with impaired differentiation, demonstrating that GATA1 represses Gata2 gene expression in hematopoietic progenitors in vivo. We have conducted chromatin immunoprecipitation (ChIP) on microarray analyses of GATA2 and GATA1, and results indicate that the GATA1-binding sites widely overlap with the sites pre-occupied by GATA2 before the GATA1 expression. Importantly, erythroid genes harboring GATA boxes bound by both GATA1 and GATA2 tend to be expressed in immature erythroid cells, whereas those harboring GATA boxes to which GATA1 binds highly but GATA2 binds only weakly are important for the mature erythroid cell function. Our results thus support the contention that preceding binding of GATA2 helps the following binding of GATA1 and thereby secures smooth expression of the transient-phase genes.


Assuntos
Células Eritroides/citologia , Eritropoese/fisiologia , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA2/genética , Células-Tronco Hematopoéticas/citologia , Animais , Sítios de Ligação , Diferenciação Celular , Células Eritroides/metabolismo , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Transgênicos
10.
J Biochem ; 175(5): 551-560, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38168819

RESUMO

Lymphedema has become a global health issue following the growing number of cancer surgeries. Curative or supportive therapeutics have long been awaited for this refractory condition. Transcription factor GATA2 is crucial in lymphatic development and maintenance, as GATA2 haploinsufficient disease often manifests as lymphedema. We recently demonstrated that Gata2 heterozygous deficient mice displayed delayed lymphatic recanalization upon lymph node resection. However, whether GATA2 contributes to lymphatic regeneration by functioning in the damaged lymph vessels' microenvironment remains explored. In this study, our integrated analysis demonstrated that dermal collagen fibers were more densely accumulated in the Gata2 heterozygous deficient mice. The collagen metabolism-related transcriptome was perturbed, and collagen matrix contractile activity was aberrantly increased in Gata2 heterozygous embryonic fibroblasts. Notably, soluble collagen placement ameliorated delayed lymphatic recanalization, presumably by modulating the stiffness of the extracellular matrix around the resection site of Gata2 heterozygous deficient mice. Our results provide valuable insights into mechanisms underlying GATA2-haploinsufficiency-mediated lymphedema and shed light on potential therapeutic avenues for this intractable disease.


Assuntos
Colágeno , Fator de Transcrição GATA2 , Heterozigoto , Linfedema , Animais , Camundongos , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Linfedema/metabolismo , Linfedema/genética , Linfedema/patologia , Colágeno/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Camundongos Knockout , Haploinsuficiência , Deficiência de GATA2/metabolismo , Deficiência de GATA2/genética , Camundongos Endogâmicos C57BL
11.
Am J Physiol Heart Circ Physiol ; 305(4): H484-93, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23792675

RESUMO

In endothelial cells (ECs), Ca²âº-activated K⁺ channels KCa2.3 and KCa3.1 play a crucial role in the regulation of arterial tone via producing NO and endothelium-derived hyperpolarizing factors. Since a rise in intracellular Ca²âº levels and activation of p300 histone acetyltransferase are early EC responses to laminar shear stress (LS) for the transcriptional activation of genes, we examined the role of Ca²âº/calmodulin-dependent kinase kinase (CaMKK), the most upstream element of a Ca²âº/calmodulin-kinase cascade, and p300 in LS-dependent regulation of KCa2.3 and KCa3.1 in ECs. Exposure to LS (15 dyn/cm²) for 24 h markedly increased KCa2.3 and KCa3.1 mRNA expression in cultured human coronary artery ECs (3.2 ± 0.4 and 45 ± 10 fold increase, respectively; P < 0.05 vs. static condition; n = 8-30), whereas oscillatory shear (OS; ± 5 dyn/cm² × 1 Hz) moderately increased KCa3.1 but did not affect KCa2.3. Expression of KCa2.1 and KCa2.2 was suppressed under both LS and OS conditions, whereas KCa1.1 was slightly elevated in LS and unchanged in OS. Inhibition of CaMKK attenuated LS-induced increases in the expression and channel activity of KCa2.3 and KCa3.1, and in phosphorylation of Akt (Ser473) and p300 (Ser1834). Inhibition of Akt abolished the upregulation of these channels by diminishing p300 phosphorylation. Consistently, disruption of the interaction of p300 with transcription factors eliminated the induction of these channels. Thus a CaMKK/Akt/p300 cascade plays an important role in LS-dependent induction of KCa2.3 and KCa3.1 expression, thereby regulating EC function and adaptation to hemodynamic changes.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteína p300 Associada a E1A/metabolismo , Células Endoteliais/enzimologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Mecanotransdução Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Adaptação Fisiológica , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática , Hemodinâmica , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Mecanotransdução Celular/efeitos dos fármacos , Potenciais da Membrana , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , RNA Mensageiro/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Estresse Mecânico , Fatores de Tempo , Regulação para Cima
12.
J Am Soc Nephrol ; 22(4): 635-48, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21372211

RESUMO

A highly acidic environment surrounds proximal tubular cells as a result of their reabsorption of HCO(3)(-). It is unclear whether this luminal acidity affects proteinuria-induced progression of tubular cell damage. Here, we investigated the contribution of luminal acidity to superoxide (O(2)(·-)) production induced by oleic acid-bound albumin (OA-Alb) in proximal tubular cells. Acidic media significantly enhanced OA-Alb-induced O(2)(·-) production in the HK-2 proximal tubular cell line. Simultaneous treatment with both OA-Alb and acidic media led to phosphorylation of the intracellular pH sensor Pyk2. Highly phosphorylated Pyk2 associated with activation of Rac1, an essential subcomponent of NAD(P)H oxidase. Furthermore, knockdown of Pyk2 with siRNA attenuated the O(2)(·-) production induced by cotreatment with OA-Alb and acid. To assess whether luminal alkalinization abrogates proteinuria-induced tubular damage, we studied a mouse model of protein-overload nephropathy. NaHCO(3) feeding selectively alkalinized the urine and dramatically attenuated the accumulation of O(2)(·-)-induced DNA damage and proximal tubular injury. Overall, these observations suggest that luminal acidity aggravates proteinuria-induced tubular damage and that modulation of this acidic environment may hold potential as a therapeutic target for proteinuric kidney disease.


Assuntos
Nefropatias/etiologia , Nefropatias/fisiopatologia , Túbulos Renais Proximais/fisiopatologia , Estresse Oxidativo/fisiologia , Proteinúria/complicações , Proteinúria/prevenção & controle , Bicarbonato de Sódio/uso terapêutico , Albuminas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Feminino , Quinase 2 de Adesão Focal/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Nefropatias/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Ácido Oleico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/metabolismo , Proteinúria/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bicarbonato de Sódio/farmacologia
13.
iScience ; 25(9): 104942, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36072552

RESUMO

Mast cells serve as a first-line defense of innate immunity. Interleukin-6 (IL-6) induced by bacterial lipopolysaccharide (LPS) in mast cells plays a crucial role in antibacterial protection. The zinc finger transcription factor GATA2 cooperatively functions with the ETS family transcription factor PU.1 in multiple mast cell activities. However, the regulatory landscape directed by GATA2 and PU.1 under inflammation remains elusive. We herein showed that a large proportion of GATA2-binding peaks were closely located with PU.1-binding peaks in distal cis-regulatory regions of inflammatory cytokine genes in mast cells. Notably, GATA2 and PU.1 played crucial roles in promoting LPS-mediated inflammatory cytokine production. Genetic ablation of GATA2-PU.1-clustered binding sites at the Il6 -39 kb region revealed its central role in LPS-induced Il6 expression in mast cells. We demonstrate a novel collaborative activity of GATA2 and PU.1 in cytokine induction upon inflammatory stimuli via the GATA2-PU.1 overlapping sites in the distal cis-regulatory regions.

14.
iScience ; 24(8): 102836, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34471858

RESUMO

Infectious diseases continually pose global medical challenges. The transcription factor GATA2 establishes gene networks and defines cellular identity in hematopoietic stem/progenitor cells and in progeny committed to specific lineages. GATA2-haploinsufficient patients exhibit a spectrum of immunodeficiencies associated with bacterial, viral, and fungal infections. Despite accumulating clinical knowledge of the consequences of GATA2 haploinsufficiency in humans, it is unclear how GATA2 haploinsufficiency compromises host anti-infectious defenses. To address this issue, we examined Gata2-heterozygous mutant (G2 Het) mice as a model for human GATA2 haploinsufficiency. In vivo inflammation imaging and cytokine multiplex analysis demonstrated that G2 Het mice had attenuated inflammatory responses with reduced levels of inflammatory cytokines, particularly IFN-γ, IL-12p40, and IL-17A, during lipopolysaccharide-induced acute inflammation. Consequently, bacterial clearance was significantly impaired in G2 Het mice after cecal ligation and puncture-induced polymicrobial peritonitis. These results provide direct molecular insights into GATA2-directed host defenses and the pathogenic mechanisms underlying observed immunodeficiencies in GATA2-haploinsufficient patients.

15.
Carcinogenesis ; 31(10): 1833-43, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20513672

RESUMO

The Nrf2 transcription factor is crucial for regulating the cellular defense against various carcinogens. However, relationship between host Nrf2 and cancer metastasis remains unexplored. To address this issue, we examined susceptibility of Nrf2-deficient mice to pulmonary cancer metastasis following implantation of the mouse Lewis lung carcinoma (3LL) cell line. Nrf2-deficient mice reproducibly exhibited a higher number of pulmonary metastatic nodules than wild-type mice did. The lung and bone marrow (BM) of cancer-bearing Nrf2-deficient mice contained increased numbers of inflammatory cells, including myeloid-derived suppressor cells (MDSCs), a potent population of immunosuppressive cells. MDSCs can attenuate CD8(+) T-cell immunity through modification of the T-cell receptor complex exploiting reactive oxygen species (ROS). MDSCs of Nrf2-deficient mice retained elevated levels of ROS relative to wild-type mice. BM transplantation experiments revealed functional disturbance in the hematopoietic and immune systems of Nrf2-deficient mice. Wild-type recipient mice with Nrf2-deficient BM cells showed increased levels of lung metastasis after cancer cell inoculation. These mice exhibited high-level accumulation of ROS in MDSCs, which showed very good coincidence to the decrease of splenic CD8(+) T-cells. In contrast, Keap1-knockdown mutant mice harboring high-level Nrf2 expression displayed increased resistance against the cancer cell metastasis to the lung, accompanied by a decrease in ROS in the MDSCs fraction. Our results thus reveal a novel function for Nrf2 in the prevention of cancer metastasis, presumably by its ability to preserve the redox balance in the hematopoietic and immune systems.


Assuntos
Neoplasias Pulmonares/secundário , Fator 2 Relacionado a NF-E2/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sistema Hematopoético/citologia , Sistema Hematopoético/metabolismo , Sistema Imunitário/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/deficiência , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
16.
Amino Acids ; 38(2): 439-49, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20013010

RESUMO

We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.


Assuntos
Adenosilmetionina Descarboxilase/metabolismo , Aminoácidos/metabolismo , Amônia/metabolismo , Aminas Biogênicas/metabolismo , Poliaminas/metabolismo , RNA Ribossômico/biossíntese , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Adenosilmetionina Descarboxilase/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Dados de Sequência Molecular , RNA Ribossômico/genética , Xenopus/genética , Proteínas de Xenopus/genética
17.
Sci Rep ; 9(1): 15603, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666556

RESUMO

Histamine is a biogenic amine that is chiefly produced in mast cells and basophils and elicits an allergic response upon stimulation. Histidine decarboxylase (HDC) is a unique enzyme that catalyzes the synthesis of histamine. Therefore, the spatiotemporally specific Hdc gene expression profile could represent the localization of histamine-producing cells under various pathophysiological conditions. Although the bioactivity of histamine is well defined, the regulatory mechanism of Hdc gene expression and the distribution of histamine-producing cell populations in various disease contexts remains unexplored. To address these issues, we generated a histidine decarboxylase BAC (bacterial artificial chromosome) DNA-directed GFP reporter transgenic mouse employing a 293-kb BAC clone containing the entire Hdc gene locus and extended flanking sequences (Hdc-GFP). We found that the GFP expression pattern in the Hdc-GFP mice faithfully recapitulated that of conventional histamine-producing cells and that the GFP expression level mirrored the increased Hdc expression in lipopolysaccharide (LPS)-induced septic lungs. Notably, a CD11b+Ly6G+Ly6Clow myeloid cell population accumulated in the lung during sepsis, and most of these cells expressed high levels of GFP and indeed contain histamine. This study reveals the accumulation of a histamine-producing myeloid cell population during sepsis, which likely participates in the immune process of sepsis.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Histidina Descarboxilase/metabolismo , Lipopolissacarídeos/farmacologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Animais , Hematopoese/efeitos dos fármacos , Histamina/biossíntese , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Células Mieloides/citologia
18.
Pulm Ther ; 4(2): 135-147, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32026395

RESUMO

INTRODUCTION: There is a paucity of data describing prescribing patterns and adherence to therapy of inhaled corticosteroids (ICS) in combination with long-acting ß2-agonists (LABA) in the Japanese population in clinical practice. METHODS: This was a non-interventional, retrospective, cohort study of patients who were prescribed medication for asthma, using data from the Japan Medical Data Center Claims Database. Data from patients aged ≥ 15 years with a prescription of asthma drugs between December 2014 and October 2015 (Day 0, the index date when asthma medication was initiated) were analysed in 12-month pre-index and post-index periods. Part 1 focused on baseline characteristics and epidemiological outcomes in the pre- and post-index period in the overall asthma population, whereas comparing medication adherence [number of prescribed days per year and proportion of days covered (PDC)] between ICS/LABA-naïve patients treated with once-daily fluticasone furoate/vilanterol (FF/VI) and twice-daily fluticasone propionate/salmeterol (FP/SAL) was the primary endpoint in Part 2. RESULTS: Of the available patient data (N = 2,953,652), 28,699 patients were identified as having asthma. ICS/LABA was the main asthma treatment prescribed; 11,167 (38.9%) patients were continuous ICS/LABA users. In ICS/LABA-naïve asthma patients, treatment with once-daily FF/VI was associated with higher medication adherence compared with twice-daily FP/SAL; mean [standard deviation (SD)] number of prescribed days per year was 97.8 (115.9) for FF/VI versus 80.5 (92.7) for FP/SAL (p = 0.04), mean (SD) PDC was 26.7% (31.5) for FF/VI versus 21.9% (24.8) for FP/SAL (p = 0.04). FF/VI was also associated with a lower rate of treatment discontinuation and no difference in use of short-acting beta2-agonists or oral corticosteroids compared with FP/SAL. CONCLUSIONS: ICS/LABA was the major prescribed asthma treatment in Japan. Medication adherence was greater with FF/VI, which may indicate that patients are more likely to adhere to once-daily FF/VI versus twice-daily FP/SAL. FUNDING: This study was funded by GSK (study sponsor). STUDY REGISTRATION: GSK Study No. 207264, GSK Study Register site: https://www.gsk-clinicalstudyregister.com/search/?search_terms=207264 .

19.
Mol Cell Biol ; 38(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30126893

RESUMO

Transcription factor GATA3 plays vital roles in inner ear development, while regulatory mechanisms controlling its inner ear-specific expression are undefined. We demonstrate that a cis-regulatory element lying 571 kb 3' to the Gata3 gene directs inner ear-specific Gata3 expression, which we refer to as the Gata3 otic vesicle enhancer (OVE). In transgenic murine embryos, a 1.5-kb OVE-directed lacZ reporter (TgOVE-LacZ) exhibited robust lacZ expression specifically in the otic vesicle (OV), an inner ear primordial tissue, and its derivative semicircular canal. To further define the regulatory activity of this OVE, we generated Cre transgenic mice in which Cre expression was directed by a 246-bp core sequence within the OVE element (TgcoreOVE-Cre). TgcoreOVE-Cre successfully marked the OV-derived inner ear tissues, including cochlea, semicircular canal and spiral ganglion, when crossed with ROSA26 lacZ reporter mice. Furthermore, Gata3 conditionally mutant mice, when crossed with the TgcoreOVE-Cre, showed hypoplasia throughout the inner ear tissues. These results demonstrate that OVE has a sufficient regulatory activity to direct Gata3 expression specifically in the otic vesicle and semicircular canal and that Gata3 expression driven by the OVE is crucial for normal inner ear development.


Assuntos
Orelha Interna/crescimento & desenvolvimento , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
Mol Cell Biol ; 37(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069743

RESUMO

GATA1 is a critical regulator of erythropoiesis. While the mechanisms underlying the high-level expression of GATA1 in maturing erythroid cells have been studied extensively, the initial activation of the Gata1 gene in early hematopoietic progenitors remains to be elucidated. We previously identified a hematopoietic stem and progenitor cell (HSPC)-specific silencer element (the Gata1 methylation-determining region [G1MDR]) that recruits DNA methyltransferase 1 (Dnmt1) and provokes methylation of the Gata1 gene enhancer. In the present study, we hypothesized that removal of the G1MDR-mediated silencing machinery is the molecular basis of the initial activation of the Gata1 gene and erythropoiesis. To address this hypothesis, we generated transgenic mouse lines harboring a Gata1 bacterial artificial chromosome in which the G1MDR was deleted. The mice exhibited abundant GATA1 expression in HSPCs, in a GATA2-dependent manner. The ectopic GATA1 expression repressed Gata2 transcription and induced erythropoiesis and apoptosis of HSPCs. Furthermore, genetic deletion of Dnmt1 in HSPCs activated Gata1 expression and depleted HSPCs, thus recapitulating the HSC phenotype associated with GATA1 gain of function. These results demonstrate that the G1MDR holds the key to HSPC maintenance and suggest that release from this suppressive mechanism is a fundamental requirement for subsequent initiation of erythroid differentiation.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Eritropoese/genética , Fator de Transcrição GATA1/genética , Animais , Apoptose/genética , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linhagem da Célula , Ensaio de Unidades Formadoras de Colônias , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Embrião de Mamíferos/metabolismo , Células Eritroides/citologia , Células Eritroides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Haploidia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Homeostase/genética , Integrases/metabolismo , Fígado/embriologia , Fígado/metabolismo , Camundongos Transgênicos , Modelos Biológicos , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA