Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(2): 307-319.e8, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36736320

RESUMO

Gaucher disease (GD) is the most common lysosomal storage disease caused by recessive mutations in the degrading enzyme of ß-glucosylceramide (ß-GlcCer). However, it remains unclear how ß-GlcCer causes severe neuronopathic symptoms, which are not fully treated by current therapies. We herein found that ß-GlcCer accumulating in GD activated microglia through macrophage-inducible C-type lectin (Mincle) to induce phagocytosis of living neurons, which exacerbated Gaucher symptoms. This process was augmented by tumor necrosis factor (TNF) secreted from activated microglia that sensitized neurons for phagocytosis. This characteristic pathology was also observed in human neuronopathic GD. Blockade of these pathways in mice with a combination of FDA-approved drugs, minocycline (microglia activation inhibitor) and etanercept (TNF blocker), effectively protected neurons and ameliorated neuronopathic symptoms. In this study, we propose that limiting unrestrained microglia activation using drug repurposing provides a quickly applicable therapeutic option for fatal neuronopathic GD.


Assuntos
Doença de Gaucher , Camundongos , Animais , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Glucosilceramidase/uso terapêutico , Glucosilceramidas/metabolismo , Glucosilceramidas/uso terapêutico , Microglia/metabolismo , Neurônios/metabolismo , Fagocitose
2.
Nat Immunol ; 19(6): 561-570, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29777213

RESUMO

Polarization of macrophages into pro-inflammatory or anti-inflammatory states has distinct metabolic requirements, with mechanistic target of rapamycin (mTOR) kinase signaling playing a critical role. However, it remains unclear how mTOR regulates metabolic status to promote polarization of these cells. Here we show that an mTOR-Semaphorin 6D (Sema6D)-Peroxisome proliferator receptor γ (PPARγ) axis plays critical roles in macrophage polarization. Inhibition of mTOR or loss of Sema6D blocked anti-inflammatory macrophage polarization, concomitant with severe impairments in PPARγ expression, uptake of fatty acids, and lipid metabolic reprogramming. Macrophage expression of the receptor Plexin-A4 is responsible for Sema6D-mediated anti-inflammatory polarization. We found that a tyrosine kinase, c-Abl, which associates with the cytoplasmic region of Sema6D, is required for PPARγ expression. Furthermore, Sema6D is important for generation of intestinal resident CX3CR1hi macrophages and prevents development of colitis. Collectively, these findings highlight crucial roles for Sema6D reverse signaling in macrophage polarization, coupling immunity, and metabolism via PPARγ.


Assuntos
Inflamação/metabolismo , Metabolismo dos Lipídeos/imunologia , Macrófagos/metabolismo , PPAR gama/metabolismo , Semaforinas/metabolismo , Animais , Diferenciação Celular/imunologia , Colite/imunologia , Inflamação/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/imunologia , Semaforinas/imunologia , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo
3.
EMBO J ; 42(1): e111389, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36444797

RESUMO

The cellular activation of the NLRP3 inflammasome is spatiotemporally orchestrated by various organelles, but whether lysosomes contribute to this process remains unclear. Here, we show the vital role of the lysosomal membrane-tethered Ragulator complex in NLRP3 inflammasome activation. Deficiency of Lamtor1, an essential component of the Ragulator complex, abrogated NLRP3 inflammasome activation in murine macrophages and human monocytic cells. Myeloid-specific Lamtor1-deficient mice showed marked attenuation of NLRP3-associated inflammatory disease severity, including LPS-induced sepsis, alum-induced peritonitis, and monosodium urate (MSU)-induced arthritis. Mechanistically, Lamtor1 interacted with both NLRP3 and histone deacetylase 6 (HDAC6). HDAC6 enhances the interaction between Lamtor1 and NLRP3, resulting in NLRP3 inflammasome activation. DL-all-rac-α-tocopherol, a synthetic form of vitamin E, inhibited the Lamtor1-HDAC6 interaction, resulting in diminished NLRP3 inflammasome activation. Further, DL-all-rac-α-tocopherol alleviated acute gouty arthritis and MSU-induced peritonitis. These results provide novel insights into the role of lysosomes in the activation of NLRP3 inflammasomes by the Ragulator complex.


Assuntos
Inflamassomos , Peritonite , Camundongos , Humanos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamação , Desacetilase 6 de Histona/genética , alfa-Tocoferol , Ácido Úrico , Peritonite/induzido quimicamente , Lisossomos , Camundongos Endogâmicos C57BL
4.
EMBO J ; 42(20): e112573, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37661814

RESUMO

Mitochondrial DNA (mtDNA) leakage into the cytoplasm can occur when cells are exposed to noxious stimuli. Specific sensors recognize cytoplasmic mtDNA to promote cytokine production. Cytoplasmic mtDNA can also be secreted extracellularly, leading to sterile inflammation. However, the mode of secretion of mtDNA out of cells upon noxious stimuli and its relevance to human disease remain unclear. Here, we show that pyroptotic cells secrete mtDNA encapsulated within exosomes. Activation of caspase-1 leads to mtDNA leakage from the mitochondria into the cytoplasm via gasdermin-D. Caspase-1 also induces intraluminal membrane vesicle formation, allowing for cellular mtDNA to be taken up and secreted as exosomes. Encapsulation of mtDNA within exosomes promotes a strong inflammatory response that is ameliorated upon exosome biosynthesis inhibition in vivo. We further show that monocytes derived from patients with Behçet's syndrome (BS), a chronic systemic inflammatory disorder, show enhanced caspase-1 activation, leading to exosome-mediated mtDNA secretion and similar inflammation pathology as seen in BS patients. Collectively, our findings support that mtDNA-containing exosomes promote inflammation, providing new insights into the propagation and exacerbation of inflammation in human inflammatory diseases.


Assuntos
Síndrome de Behçet , Exossomos , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Síndrome de Behçet/genética , Síndrome de Behçet/metabolismo , Exossomos/genética , Mitocôndrias/genética , Inflamação/metabolismo , Caspases/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(2): e2315898120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165930

RESUMO

Protection against endothelial damage is recognized as a frontline approach to preventing the progression of cytokine release syndrome (CRS). Accumulating evidence has demonstrated that interleukin-6 (IL-6) promotes vascular endothelial damage during CRS, although the molecular mechanisms remain to be fully elucidated. Targeting IL-6 receptor signaling delays CRS progression; however, current options are limited by persistent inhibition of the immune system. Here, we show that endothelial IL-6 trans-signaling promoted vascular damage and inflammatory responses via hypoxia-inducible factor-1α (HIF1α)-induced glycolysis. Using pharmacological inhibitors targeting HIF1α activity or mice with the genetic ablation of gp130 in the endothelium, we found that inhibition of IL-6R (IL-6 receptor)-HIF1α signaling in endothelial cells protected against vascular injury caused by septic damage and provided survival benefit in a mouse model of sepsis. In addition, we developed a short half-life anti-IL-6R antibody (silent anti-IL-6R antibody) and found that it was highly effective at augmenting survival for sepsis and severe burn by strengthening the endothelial glycocalyx and reducing cytokine storm, and vascular leakage. Together, our data advance the role of endothelial IL-6 trans-signaling in the progression of CRS and indicate a potential therapeutic approach for burns and sepsis.


Assuntos
Receptor gp130 de Citocina , Subunidade alfa do Fator 1 Induzível por Hipóxia , Interleucina-6 , Receptores de Interleucina-6 , Sepse , Animais , Camundongos , Receptor gp130 de Citocina/genética , Síndrome da Liberação de Citocina , Células Endoteliais , Receptores de Interleucina-6/genética , Sepse/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
6.
Biochem Biophys Res Commun ; 696: 149511, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38241813

RESUMO

RNA splicing is a fundamental cellular mechanism performed by spliceosomes that synthesise multiple mature RNA isoforms from a single gene. The association between spliceosome abnormality and solid cancers remains largely unknown. Here, we demonstrated that Sm proteins, which are common components of the spliceosomes and constitute the Sm ring, were overexpressed in multiple cancers and their expression levels were correlated with clinical prognosis. In a pan-cancer mutational hotspot in the Sm ring at SNRPD3 G96V, we found that the G96V substitution confers resistance to hypoxia. RNA-seq detected numerous differentially spliced events between the wild-type and mutation-carrying cells cultured under hypoxia, wherein skipping exons and mutually exclusive exons were frequently observed. This was observed in DNM1L mRNA, which encodes the DRP1 protein that regulates mitochondrial fission. The mitochondria of cells carrying this mutation were excessively fragmented compared with those of wild-type cells. Furthermore, treatment with a DRP1 inhibitor (Mdivi-1) recovered the over-fragmented mitochondria, leading to the attenuation of hypoxia resistance in the mutant cells. These results propose a novel correlation between the cancer-related spliceosome abnormality and mitochondrial fission. Thus, targeting SNRPD3 G96V with a DRP1 inhibitor is a potential treatment strategy for cancers with spliceosome abnormalities.


Assuntos
GTP Fosfo-Hidrolases , Neoplasias , Humanos , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Mutação , Neoplasias/genética , Neoplasias/metabolismo
7.
Int Immunol ; 35(1): 27-41, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35997780

RESUMO

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, and many peripheral immune cell populations (ICPs) are thought to be altered according to the course of the disease. However, it is unclear which ICPs are associated with the clinical phenotypes of SLE. We analyzed peripheral blood mononuclear cells (PBMCs) of 28 SLE patients using mass cytometry and identified 30 ICPs. We determined the proliferative activity of ICPs by measuring the proportion of cells expressing specific markers and Ki-67 among CD45+ cells (Ki-67+ proportion). We observed an increased Ki-67+ proportion for many ICPs of SLE patients and examined the association between their Ki-67+ proportions and clinical findings. The Ki-67+ proportions of five ICPs [classical monocyte (cMo), effector memory CD8+ T cell (CD8Tem), CXCR5- naive B cell (CXCR5- nB), and CXCR5- IgD-CD27- B cell (CXCR5- DNB)] were identified as clinically important factors. The SLE Disease Activity Index (SLEDAI) was positively correlated with cMo and plasma cells (PC). The titer of anti-DNA antibodies was positively correlated with cMo, CXCR5- nB, and CXCR5- DNB. The C4 level was negatively correlated with CXCR5- DNB. The bioactivity of type I interferon was also positively correlated with these ICPs. Fever and renal involvement were associated with cMo. Rash was associated with CD8Tem and CXCR5- DNB. On the basis of the proliferative activity among five ICPs, SLE patients can be classified into five clusters showing different SLE phenotypes. Evaluation of the proliferative activity in each ICP can be linked to the clinical phenotypes of individual SLE patients and help in the treatment strategy.


Assuntos
Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico , Humanos , Antígeno Ki-67 , Linfócitos B , Fenótipo
8.
Biochem Biophys Res Commun ; 657: 8-15, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-36963175

RESUMO

A new non-invasive screening profile has been realized that can aid in determining T-cell activation state at single-cell level. Production of activated T-cells with good specificity and stable proliferation is greatly beneficial for advancing adoptive immunotherapy as innate immunological cells are not effective in recognizing and eliminating cancer as expected. The screening method is realized by relating intracellular Ca2+ intensity and motility of T-cells interacting with APC (Antigen Presenting Cells) in a microfluidic chip. The system is tested using APC pulsed with OVA257-264 peptide and its modified affinities (N4, Q4, T4 and V4), and the T-cells from OT-1 mice. In addition, single cell RNA sequencing reveals the activation states of the cells and the clusters from the derived profiles can be indicative of the T-cell activation state. The presented system here can be versatile for a comprehensive application to proceed with T-cell-based immunotherapy and screen the antigen-specific T-cells with excellent efficiency and high proliferation.


Assuntos
Microfluídica , Linfócitos T , Camundongos , Animais , Antígenos , Células Apresentadoras de Antígenos , Ativação Linfocitária
9.
Rheumatology (Oxford) ; 62(5): 1988-1997, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36094336

RESUMO

OBJECTIVE: B-cell activating factor (BAFF) is implicated in SLE pathogenesis. Blocking BAFF signalling has contributed to reducing glucocorticoid dosage and preventing organ damage. However, clinical characteristics of patients who may benefit from this therapy are not yet fully elucidated. Therefore, we identified patients with high BAFF-bioactivity to investigate their clinical characteristics and BAFF-producing cells. METHODS: We established the reporter cell for BAFF and investigated the clinical characteristics of SLE patients with high BAFF-bioactivity. We identified BAFF-expressing kidney cells using publicly available scRNA-seq data and immunohistological analysis. SLE patients were stratified based on the bioactivity of BAFF and type-I IFN (IFN-I) to identify associated characteristic clinical manifestations. RESULTS: SLE patients, especially patients with LN, had significantly higher serum BAFF-bioactivity than healthy controls (HC) and non-LN patients. Additionally, single-cell-RNA-seq data and immunohistological analysis of kidney samples from LN patients revealed that BAFF is expressed in glomerular macrophages and mesangial cells. Notably, BAFF bioactivity was elevated in the urine of LN patients compared with that of non-LN patients, while no IFN-I bioactivity was detected in the urine. Furthermore, SLE stratification based on bioactivities of serum BAFF and IFN-I revealed the clinical characteristics of patients: high BAFF represented patients with LN and high IFN-I represented patients with blood and skin manifestations. CONCLUSIONS: Monitoring urinary BAFF-bioactivity may be valuable in diagnosing LN. Furthermore, stratification based on serum BAFF and IFN-I bioactivities may allow the identification of appropriate patients for biologics targeting BAFF and IFN-I.


Assuntos
Produtos Biológicos , Interferon Tipo I , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/patologia , Fator Ativador de Células B , Rim/patologia , Glomérulos Renais/patologia , Lúpus Eritematoso Sistêmico/patologia
10.
J Immunol ; 207(5): 1456-1467, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34380650

RESUMO

Cancer immunotherapy has shown great promise as a new standard therapeutic strategy against cancer. However, the response rate and survival benefit remain unsatisfactory because most current approaches, such as the use of immune checkpoint inhibitors, depend on spontaneous antitumor immune responses. One possibility for improving the efficacy of immunotherapy is to promote antitumor immunity using adjuvants or specific cytokines actively. IL-33 has been a candidate for such cytokine therapies, but it remains unclear how and in which situations IL-33 exerts antitumor immune effects. In this study, we demonstrate the potent antitumor effects of IL-33 using syngeneic mouse models, which included marked inhibition of tumor growth and upregulation of IFN-γ production by tumor-infiltrating CD8+ T cells. Of note, IL-33 induced dendritic cells to express semaphorin 4A (Sema4A), and the absence of Sema4A abolished the antitumor activity of IL-33, indicating that Sema4A is intrinsically required for the antitumor effects of IL-33 in mice. Collectively, these results not only present IL-33 and Sema4A as potential therapeutic targets but also shed light on the potential use of Sema4A as a biomarker for dendritic cell activation status, which has great value in various fields of cancer research, including vaccine development.


Assuntos
Carcinoma Pulmonar de Lewis/imunologia , Células Dendríticas/imunologia , Interleucina-33/metabolismo , Semaforinas/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Semaforinas/genética
11.
Nat Immunol ; 11(7): 594-600, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20512151

RESUMO

The recirculation of leukocytes is essential for proper immune responses. However, the molecular mechanisms that regulate the entry of leukocytes into the lymphatics remain unclear. Here we show that plexin-A1, a principal receptor component for class III and class VI semaphorins, was crucially involved in the entry of dendritic cells (DCs) into the lymphatics. Additionally, we show that the semaphorin Sema3A, but not Sema6C or Sema6D, was required for DC transmigration and that Sema3A produced by the lymphatics promoted actomyosin contraction at the trailing edge of migrating DCs. Our findings not only demonstrate that semaphorin signals are involved in DC trafficking but also identify a previously unknown mechanism that induces actomyosin contraction as these cells pass through narrow gaps.


Assuntos
Células Dendríticas/metabolismo , Vasos Linfáticos/metabolismo , Miosina Tipo II/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Actomiosina/metabolismo , Transferência Adotiva , Animais , Ensaios de Migração de Leucócitos , Movimento Celular/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/patologia , Técnicas de Introdução de Genes , Imunidade , Vasos Linfáticos/patologia , Camundongos , Camundongos Knockout , Contração Muscular , Miosina Tipo II/imunologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Neuropilina-1/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Semaforinas/genética , Semaforinas/imunologia , Transdução de Sinais
12.
J Autoimmun ; 126: 102774, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896887

RESUMO

Intracellular proteins are often targeted by autoantibodies in autoimmune diseases; however, the mechanism through which intracellular molecules are targeted remains unknown. We previously found that several intracellular misfolded proteins are transported to the cell surface by HLA class II molecules and are recognized by autoantibodies in some autoimmune diseases, such as rheumatoid arthritis, antiphospholipid syndrome, and microscopic polyangiitis. Ro52 is an intracellular Fc receptor that is a target antigen for myositis-associated autoantibodies. We analyzed the role of HLA class II molecules in the autoantibody recognition of Ro52. Ro52 alone was not transported to the cell surface by HLA class II molecules; however, it was transported to the cell surface in the presence of both IgG heavy chain and HLA class II molecules to form a Ro52/IgG/HLA-DR complex. The Ro52/IgG/HLA-DR complex was specifically recognized by autoantibodies from some patients with inflammatory myopathies. We then evaluated 120 patients with inflammatory myopathies with four types of myositis-specific antibodies and analyzed the autoantibodies against the Ro52/IgG/HLA-DR complex. The specific antibodies against the Ro52/IgG/HLA-DR complex were detected in 90% and 93% of patients who were positive for anti-MDA5 and anti-ARS antibodies, respectively. In individual patients with these two inflammatory myopathies, changes in serum titers of anti-Ro52/IgG/HLA-DR-specific antibodies were correlated with the levels of KL-6 (R = 0.51 in anti-MDA5 antibody-positive DM patients, R = 0.67 in anti-ARS antibody-positive PM/DM patients with respiratory symptoms) and CK (R = 0.63 in anti-ARS antibody-positive PM/DM patients with muscle symptoms) over time. These results suggest that antibodies against Ro52/IgG/HLA-DR expressed on the cell surface could be involved in the pathogenesis of inflammatory myopathy subgroups.


Assuntos
Doenças Autoimunes , Miosite , Ribonucleoproteínas/imunologia , Autoanticorpos , Antígenos HLA-DR , Humanos , Imunoglobulina G
13.
J Allergy Clin Immunol ; 145(3): 843-854.e4, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32035658

RESUMO

BACKGROUND: Eosinophilic chronic rhinosinusitis (ECRS) is a subtype of chronic rhinosinusitis. Clinical markers for ECRS disease activity and treatment strategies have not been sufficiently established. Although semaphorins are originally identified as neuronal guidance factors, it is becoming clear that they play key roles in immune regulation and inflammatory diseases. OBJECTIVE: We sought to investigate the pathological functions and therapeutic potential of semaphorin 4D (SEMA4D) in ECRS. METHODS: Serum soluble SEMA4D levels in patients with paranasal sinus diseases were measured by ELISA. The expression of SEMA4D in blood cells and nasal polyp tissues was assessed by flow cytometry and immunohistochemistry, respectively. Generation of soluble SEMA4D was evaluated in matrix metalloproteinase-treated eosinophils. Endothelial cells were stimulated with recombinant SEMA4D, followed by eosinophil transendothelial migration assays. Allergic chronic rhinosinusitis was induced in mice using Aspergillus protease with ovalbumin. The efficacy of treatment with anti-SEMA4D antibody was evaluated histologically and by nasal lavage fluid analysis. RESULTS: Serum soluble SEMA4D levels were elevated in patients with ECRS and positively correlated with disease severity. Tissue-infiltrated eosinophils in nasal polyps from patients with ECRS stained strongly with anti-SEMA4D antibody. Cell surface expression of SEMA4D on eosinophils from patients with ECRS was reduced, which was due to matrix metalloproteinase-9-mediated cleavage of membrane SEMA4D. Soluble SEMA4D induced eosinophil transendothelial migration. Treatment with anti-SEMA4D antibody ameliorated eosinophilic infiltration in sinus tissues and nasal lavage fluid in the ECRS animal model. CONCLUSIONS: Eosinophil-derived SEMA4D aggravates ECRS. Levels of serum SEMA4D reflect disease severity, and anti-SEMA4D antibody has therapeutic potential as a treatment for ECRS.


Assuntos
Antígenos CD/metabolismo , Eosinofilia/metabolismo , Rinite/metabolismo , Semaforinas/metabolismo , Sinusite/metabolismo , Adulto , Animais , Antígenos CD/imunologia , Antígenos CD/farmacologia , Doença Crônica , Eosinofilia/imunologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Proteínas Recombinantes/farmacologia , Rinite/imunologia , Semaforinas/imunologia , Semaforinas/farmacologia , Sinusite/imunologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos
14.
Int Immunol ; 31(1): 33-40, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30239772

RESUMO

Eosinophilic chronic rhinosinusitis (ECRS) is a subtype of chronic rhinosinusitis (CRS) that is characterized by intractable nasal polyp formation. Eosinophil-derived neurotoxin (EDN) is an eosinophil granule protein that is closely related to allergic inflammation, but the pathological implications of EDN in ECRS remain unknown. In this study, we evaluated the function of EDN in ECRS pathogenesis and assessed its potential as a disease activity marker. Serum EDN levels were significantly higher in patients with ECRS than in those with other nasal and paranasal diseases, and were positively correlated with clinical disease activity. Production of EDN from isolated human eosinophils was induced by stimulation with IL-5 in vitro. Human nasal epithelial cells were stimulated with EDN, and the resultant changes in gene expression were detected by RNA sequencing. Pathway analysis revealed that the major canonical pathway affected by EDN stimulation was 'regulation of the epithelial-mesenchymal transition pathway'; the only gene in this pathway to be up-regulated was matrix metalloproteinase 9 (MMP-9). Consistent with this, immunostaining analysis revealed intense staining of both EDN and MMP-9 in nasal polyps from patients with ECRS. In conclusion, our data demonstrate that serum EDN level is a useful marker for the evaluation of ECRS severity. Furthermore, EDN induces production of MMP-9 from the nasal epithelium, which may be involved in the pathogenesis of ECRS.


Assuntos
Remodelação das Vias Aéreas , Neurotoxina Derivada de Eosinófilo/metabolismo , Eosinófilos/imunologia , Eosinófilos/metabolismo , Rinite/etiologia , Rinite/metabolismo , Sinusite/etiologia , Sinusite/metabolismo , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Degranulação Celular/imunologia , Doença Crônica , Citocinas/metabolismo , Suscetibilidade a Doenças , Feminino , Humanos , Contagem de Leucócitos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Rinite/diagnóstico , Índice de Gravidade de Doença , Sinusite/diagnóstico
15.
J Immunol ; 200(11): 3790-3800, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29686050

RESUMO

Amino acid metabolism plays important roles in innate immune cells, including macrophages. Recently, we reported that a lysosomal adaptor protein, Lamtor1, which serves as the scaffold for amino acid-activated mechanistic target of rapamycin complex 1 (mTORC1), is critical for the polarization of M2 macrophages. However, little is known about how Lamtor1 affects the inflammatory responses that are triggered by the stimuli for TLRs. In this article, we show that Lamtor1 controls innate immune responses by regulating the phosphorylation and nuclear translocation of transcription factor EB (TFEB), which has been known as the master regulator for lysosome and autophagosome biogenesis. Furthermore, we show that nuclear translocation of TFEB occurs in alveolar macrophages of myeloid-specific Lamtor1 conditional knockout mice and that these mice are hypersensitive to intratracheal administration of LPS and bleomycin. Our observation clarified that the amino acid-sensing pathway consisting of Lamtor1, mTORC1, and TFEB is involved in the regulation of innate immune responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/imunologia , Imunidade Inata/imunologia , Lisossomos/imunologia , Proteínas/imunologia , Aminoácidos/imunologia , Animais , Autofagia/imunologia , Linhagem Celular , Núcleo Celular/imunologia , Macrófagos/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/imunologia , Transporte Proteico/imunologia , Células RAW 264.7 , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/imunologia
16.
Genes Dev ; 26(8): 816-29, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22465952

RESUMO

Photoreceptor cell death is the hallmark of a group of human inherited retinal degeneration. Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Here, we show that Semaphorin 4A (Sema4A), a member of axonal guidance molecule semaphorin, plays a role in Rab11/FIP2-mediated endosomal sorting in retinal pigment epithelial cells to support photoreceptor function. In response to oxidative stress, Sema4A switches the endosomal sorting of the lysosomal precursor protein prosaposin from the lysosome to the exosomal release, which prevents light-induced photoreceptor apoptosis. In the absence of oxidative stress, Sema4A sorts retinoid-binding proteins with retinoids between the cell surface and endoplasmic reticulum, by which 11-cis-retinal, a chromophore for phototransduction, is regenerated and transported back to photoreceptors. Owing to defects in these processes, Sema4A-deficient mice exhibit marked photoreceptor degeneration. Our findings therefore indicate that Sema4A regulates two distinct endosomal-sorting pathways that are critical for photoreceptor survival and phototransduction during the transition between daylight and darkness.


Assuntos
Endossomos/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Epitélio Pigmentado da Retina/metabolismo , Semaforinas/metabolismo , Animais , Proteínas de Ciclo Celular , Sobrevivência Celular , Proteínas do Olho/metabolismo , Luz , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células Fotorreceptoras de Vertebrados/metabolismo , Saposinas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
17.
J Immunol ; 199(6): 2008-2019, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768723

RESUMO

Mechanistic target of rapamycin complex (mTORC)1 integrates intracellular sufficiency of nutrients and regulates various cellular functions. Previous studies using mice with conditional knockout of mTORC1 component proteins (i.e., mTOR, Raptor, and Rheb) gave conflicting results on the roles of mTORC1 in CD4+ T cells. Lamtor1 is the protein that is required for amino acid sensing and activation of mTORC1; however, the roles of Lamtor1 in T cells have not been investigated. In this article, we show that Lamtor1-deficient CD4+ T cells exhibited marked reductions in proliferation, IL-2 production, mTORC1 activity, and expression of purine- and lipid-synthesis genes. Polarization of Th17 cells, but not Th1 and Th2 cells, diminished following the loss of Lamtor1. Accordingly, CD4-Cre-driven Lamtor1-knockout mice exhibited reduced numbers of CD4+ and CD8+ T cells at rest, and they were completely resistant to experimental autoimmune encephalomyelitis. In contrast, genetic ablation of Lamtor1 in Foxp3+ T cells resulted in severe autoimmunity and premature death. Lamtor1-deficient regulatory T cells survived ex vivo as long as wild-type regulatory T cells; however, they exhibited a marked loss of suppressive function and expression of signature molecules, such as CTLA-4. These results indicate that Lamtor1 plays essential roles in CD4+ T cells. Our data suggest that Lamtor1 should be considered a novel therapeutic target in immune systems.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Complexos Multiproteicos/metabolismo , Subpopulações de Linfócitos T/fisiologia , Linfócitos T Reguladores/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Células Th17/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Humanos , Interleucina-2/metabolismo , Metabolismo dos Lipídeos , Ativação Linfocitária , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
18.
Ann Rheum Dis ; 77(12): 1720-1729, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30279267

RESUMO

OBJECTIVE: To evaluate the efficacy and safety of tocilizumab, an interleukin-6 receptor antibody, in patients with adult-onset Still's disease. METHODS: In this double-blind, randomised, placebo-controlled phase III trial, 27 patients with adult-onset Still's disease refractory to glucocorticoids were randomised to tocilizumab at a dose of 8 mg/kg or placebo given intravenously every 2 weeks during the 12-week, double-blind phase. Patients received open-label tocilizumab for 40 weeks subsequently. The primary outcome was American College of Rheumatology (ACR) 50 response at week 4. The secondary outcomes included ACR 20/50/70, systemic feature score, glucocorticoid dose and adverse events at each point. RESULTS: In the full analysis set, ACR50 response at week 4 was achieved in 61.5% (95% CI 31.6 to 86.1) in the tocilizumab group and 30.8% (95% CI 9.1 to 61.4) in the placebo group (p=0.24). The least squares means for change in systemic feature score at week 12 were -4.1 in the tocilizumab group and -2.3 in the placebo group (p=0.003). The dose of glucocorticoids at week 12 decreased by 46.2% in the tocilizumab group and 21.0% in the placebo group (p=0.017). At week 52, the rates of ACR20, ACR50 and ACR70 were 84.6%, 84.6% and 61.5%, respectively, in both groups. Serious adverse events in all participants who received one dose of tocilizumab were infections, aseptic necrosis in the hips, exacerbation of adult-onset Still's disease, drug eruption and anaphylactic shock. CONCLUSION: The study suggests that tocilizumab is effective in adult-onset Still's disease, although the primary endpoint was not met and solid conclusion was not drawn.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antirreumáticos/uso terapêutico , Doença de Still de Início Tardio/tratamento farmacológico , Adulto , Idoso , Método Duplo-Cego , Resistência a Medicamentos , Feminino , Glucocorticoides , Humanos , Masculino , Pessoa de Meia-Idade
19.
Ann Rheum Dis ; 77(10): 1507-1515, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29945921

RESUMO

OBJECTIVE: Despite the importance of type I interferon (IFN-I) in systemic lupus erythematosus (SLE) pathogenesis, the mechanisms of IFN-I production have not been fully elucidated. Recognition of nucleic acids by DNA sensors induces IFN-I and interferon-stimulated genes (ISGs), but the involvement of cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) and stimulator of interferon genes (STING) in SLE remains unclear. We studied the role of the cGAS-STING pathway in the IFN-I-producing cascade driven by SLE serum. METHODS: We collected sera from patients with SLE (n=64), patients with other autoimmune diseases (n=31) and healthy controls (n=35), and assayed them using a cell-based reporter system that enables highly sensitive detection of IFN-I and ISG-inducing activity. We used Toll-like receptor-specific reporter cells and reporter cells harbouring knockouts of cGAS, STING and IFNAR2 to evaluate signalling pathway-dependent ISG induction. RESULTS: IFN-I bioactivity and ISG-inducing activities of serum were higher in patients with SLE than in patients with other autoimmune diseases or healthy controls. ISG-inducing activity of SLE sera was significantly reduced in STING-knockout reporter cells, and STING-dependent ISG-inducing activity correlated with disease activity. Double-stranded DNA levels were elevated in SLE. Apoptosis-derived membrane vesicles (AdMVs) from SLE sera had high ISG-inducing activity, which was diminished in cGAS-knockout or STING-knockout reporter cells. CONCLUSIONS: AdMVs in SLE serum induce IFN-I production through activation of the cGAS-STING pathway. Thus, blockade of the cGAS-STING axis represents a promising therapeutic target for SLE. Moreover, our cell-based reporter system may be useful for stratifying patients with SLE with high ISG-inducing activity.


Assuntos
Vesículas Citoplasmáticas/fisiologia , Interferon Tipo I/biossíntese , Lúpus Eritematoso Sistêmico/sangue , Proteínas de Membrana/sangue , Nucleotidiltransferases/sangue , Apoptose , Humanos , Proteínas de Membrana/fisiologia , Transdução de Sinais
20.
Genes Dev ; 24(4): 396-410, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20159958

RESUMO

Commissural axon guidance requires complex modulations of growth cone sensitivity to midline-derived cues, but underlying mechanisms in vertebrates remain largely unknown. By using combinations of ex vivo and in vivo approaches, we uncovered a molecular pathway controlling the gain of response to a midline repellent, Semaphorin3B (Sema3B). First, we provide evidence that Semaphorin3B/Plexin-A1 signaling participates in the guidance of commissural projections at the vertebrate ventral midline. Second, we show that, at the precrossing stage, commissural neurons synthesize the Neuropilin-2 and Plexin-A1 Semaphorin3B receptor subunits, but Plexin-A1 expression is prevented by a calpain1-mediated processing, resulting in silencing commissural responsiveness. Third, we report that, during floor plate (FP) in-growth, calpain1 activity is suppressed by local signals, allowing Plexin-A1 accumulation in the growth cone and sensitization to Sema3B. Finally, we show that the FP cue NrCAM mediates the switch of Plexin-A1 processing underlying growth cone sensitization to Sema3B. This reveals pathway-dependent modulation of guidance receptor processing as a novel mechanism for regulating guidance decisions at intermediate targets.


Assuntos
Axônios/fisiologia , Neurônios/citologia , Transdução de Sinais , Animais , Axônios/metabolismo , Calpaína/metabolismo , Moléculas de Adesão Celular/metabolismo , Embrião de Galinha , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropilina-2/metabolismo , Semaforinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA