RESUMO
The aim of this study was to investigate the effect of Yokukansan (YKS) on the impairment of spatial memory and cholinergic involvement in a rat model of early-phase Alzheimer's disease (AD). In this model, rats underwent four-vessel transient cerebral ischemia and then were treated with beta amyloid oligomers injected intracerebroventricularly once daily for 7 days. These animals showed memory impairment in an eight-arm radial maze task without histological evidence of apoptosis but with a decrease in expression of hippocampal dynamin 1, an important factor in synaptic vesicle endocytosis. Oral administration of YKS for 2 weeks significantly increased the number of correct choices and decreased the number of error choices in the eight-arm radial maze task (P < 0.05). Moreover, YKS significantly increased high Kâº-evoked potentiation of acetylcholine (ACh) release (P < 0.05) and significantly increased the expression of dynamin 1 (P < 0.01) in the hippocampus. The ameliorative effect of YKS on spatial memory impairment in our rat model of early-phase AD may be mediated in part by an increase in ACh release and modulation of dynamin 1 expression, leading to improved synaptic function. Future studies will determine whether YKS is similarly useful in the treatment of memory defects in patients diagnosed with early-stage AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Dinamina I/metabolismo , Transtornos da Memória/tratamento farmacológico , Acetilcolina/metabolismo , Administração Oral , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraventriculares , Ataque Isquêmico Transitório/tratamento farmacológico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacosRESUMO
Telmisartan, an angiotensin type 1 receptor blocker, is used in the management of hypertension to control blood pressure. In addition, telmisartan has a partial agonistic effect on peroxisome proliferator activated receptor γ (PPARγ). Recently, the effects of telmisartan on spatial memory or the inflammatory response were monitored in a mouse model of Alzheimer's disease (AD). However, to date, no studies have investigated the ameliorative effects of telmisartan on impaired spatial memory and the inflammatory response in an AD animal model incorporating additional cerebrovascular disease factors. In this study, we examined the effect of telmisartan on spatial memory impairment and the inflammatory response in a rat model of AD incorporating additional cerebrovascular disease factors. Rats were subjected to cerebral ischemia and an intracerebroventricular injection of oligomeric or aggregated amyloid-ß (Aß). Oral administration of telmisartan (0.3, 1, 3 mg/kg/d) seven days after ischemia and Aß treatment resulted in better performance in the eight arm radial maze task in a dose-dependent manner. Telmisartan also reduced tumor necrosis factor α mRNA expression in the hippocampal region of rats with impaired spatial memory. These effects of telmisartan were antagonized by GW9662, an antagonist of PPARγ. These results suggest that telmisartan has ameliorative effects on the impairment of spatial memory in a rat model of AD incorporating additional cerebrovascular disease factors via its anti-inflammatory effect.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Benzimidazóis/uso terapêutico , Benzoatos/uso terapêutico , Transtornos Cerebrovasculares/tratamento farmacológico , Inflamação/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Amiloide/efeitos adversos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Anilidas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/metabolismo , Cérebro/efeitos dos fármacos , Cérebro/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , PPAR gama/metabolismo , Ratos , Ratos Wistar , Telmisartan , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The ganglioside GM3 synthase (SAT-I), encoded by a single-copy gene, is a primary glycosyltransferase for the synthesis of complex gangliosides. In SAT-I null mice, hearing ability, assessed by brainstem auditory-evoked potentials (BAEP), was impaired at the onset of hearing and had been completely lost by 17 days after birth (P17), showing a deformity in hair cells in the organ of Corti. By 2 months of age, the organ of Corti had selectively and completely disappeared without effect on balance or motor function or in the histology of vestibule. Interestingly, spatiotemporal changes in localization of individual gangliosides, including GM3 and GT1b, were observed during the postnatal development and maturation of the normal inner ear. GM3 expressed in almost all regions of cochlea at P3, but at the onset of hearing it distinctly localized in stria vascularis, spiral ganglion, and the organ of Corti. In addition, SAT-I null mice maintain the function of stria vascularis, because normal potassium concentration and endocochlear potential of endolymph were observed even when they lost the BAEP completely. Thus, the defect of hearing ability of SAT-I null mice could be attributed to the functional disorganization of the organ of Corti, and the expression of gangliosides, especially GM3, during the early part of the functional maturation of the cochlea could be essential for the acquisition and maintenance of hearing function.
Assuntos
Surdez/genética , Órgão Espiral/fisiologia , Sialiltransferases/genética , Sialiltransferases/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Mutação , Órgão Espiral/embriologia , Reflexo de Sobressalto , Estria Vascular/fisiologiaRESUMO
In the present study, we investigated the effect of the Kampo medicine Yokukansan (YKS) on pentobarbital-induced sleep in group-housed and socially isolated mice. Socially isolated mice showed shorter sleeping time than the group-housed mice. YKS (300 mg/kg, p.o.) prolonged the pentobarbital-induced sleeping time in socially isolated mice without affecting pentobarbital sleep in group-housed mice. The prolongation of sleeping time by YKS was reversed by bicuculline (3 mg/kg, i.p.) and flumazenil (3 mg/kg, i.p.), but not WAY100635. These findings suggest that the GABA(A)-benzodiazepine receptor complex, but not 5-HT(1A) receptors, is involved in the reversal effect of YKS on the decrease of pentobarbital sleep by social isolation.
Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Hipnóticos e Sedativos/uso terapêutico , Pentobarbital/uso terapêutico , Receptores de GABA-A/metabolismo , Transtornos do Sono-Vigília/tratamento farmacológico , Sono/efeitos dos fármacos , Isolamento Social , Animais , Bicuculina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Flumazenil/farmacologia , Agonistas de Receptores de GABA-A/uso terapêutico , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Medicina Kampo , Camundongos , Camundongos Endogâmicos , Receptores de GABA-A/química , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/metabolismo , Estresse Psicológico/fisiopatologiaRESUMO
In the present study, we investigated the effect of the Kampo medicine Yokukansan (YKS) on pentobarbital-induced sleep in group-housed and socially isolated mice. Socially isolated mice showed shorter sleeping time than the group-housed mice. YKS (300 mg/kg, p.o.) prolonged the pentobarbital-induced sleeping time in socially isolated mice without affecting pentobarbital sleep in group-housed mice. The prolongation of sleeping time by YKS was reversed by bicuculline (3 mg/kg, i.p.) and flumazenil (3 mg/kg, i.p.), but not WAY100635. These findings suggest that the GABA(A) - benzodiazepine receptor complex, but not 5-HT(1A) receptors, is involved in the reversal effect of YKS on the decrease of pentobarbital sleep by social isolation.
RESUMO
Citidine-5-diphosphocholine or citicoline (CDP-choline) is used as a neuroprotective and memory-enhancing drug in cerebral stroke, Alzheimer's disease, and other neurovascular diseases. Non-clinical studies have demonstrated the neuroprotective effects of CDP-choline in ischemic animal models. However, the relationship between the neuroprotective effect and the memory enhancing effect of CDP-choline is still unknown. No studies have demonstrated the ameliorative effect on impaired spatial memory and the suppressive effect on neuronal cell death of CDP-choline in the same model. In this study, we examined the effect of CDP-choline on impaired spatial memory and hippocampal CA1 neuronal death in rats subjected to repeated cerebral ischemia, and we compared the mechanism of CDP-choline to that of donepezil. Seven days post administration of CDP-choline (100, 300, 1000 mg/kg per day, p.o.) or donepezil increased correct choices and reduced error choices in an eight-arm radial maze task in a dose-dependent manner. Neuronal cell death of caspase-3 protein-positive neurons in the hippocampus were reduced by repeated administration of CDP-choline at the highest dose. These results suggest that CDP-choline has ameliorative effects on the impairment of spatial memory via hippocampal neuronal cell death in a rat model of cerebral ischemia.
Assuntos
Citidina Difosfato Colina/farmacologia , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto , Ratos , Ratos WistarRESUMO
Alzheimer's disease (AD) is progressive dementia with senile plaques composed of beta-amyloid (Abeta). Recent studies suggest that synaptic dysfunction is one of the earliest events in the pathogenesis of AD. Here we provide the first experimental evidence that a change in the level of dynamin 1 induced by Abeta correlates with memory impairment in vivo. We treated rats with transient cerebral ischemia with oligomeric forms of Abeta (Abeta oligomers), including dimers, trimers, and tetramers, intracerebroventricularly. The combination of Abeta oligomers and cerebral ischemia, but not cerebral ischemia alone, significantly impaired memory and decreased the level of dynamin 1, which plays a critical role in synaptic vesicle recycling, but did not affect the levels of other synaptic proteins, such as synaptophysin and synaptobrevin, in the hippocampus. Furthermore, the N-methyl-D-aspartate (NMDA) receptor antagonist memantine prevented memory impairment and dynamin 1 degradation, suggesting that these changes might be mediated by NMDA receptors. These results suggest that Abeta oligomers induce memory impairment via dynamin 1 degradation, which may imply that dynamin 1 degradation is one of the causes of synaptic dysfunction in AD.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Dinamina I/metabolismo , Ataque Isquêmico Transitório/metabolismo , Transtornos da Memória/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Dinamina I/deficiência , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memantina/farmacologia , Transtornos da Memória/tratamento farmacológico , Células PC12 , Multimerização Proteica , Proteínas R-SNARE/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Sinaptofisina/metabolismoRESUMO
We examined the cerebroprotective mechanism of cannabidiol, the non-psychoactive component of marijuana, against infarction in a 4-h mouse middle cerebral artery (MCA) occlusion model. Cannabidiol was intraperitoneally administrated immediately before and 3h after cerebral ischemia. Infarct size and myeloperoxidase (MPO) activity, a marker of neutrophil, monocyte/macropharge, were measured at 24h after cerebral ischemia. Activated microglia and astrocytes were evaluated by immunostaining. Moreover, high-mobility group box1 (HMGB1) was also evaluated at 1 and 3 days after MCA occlusion. In addition, neurological score and motor coordination on the rota-rod test were assessed at 1 and 3 days after cerebral ischemia. Cannabidiol significantly prevented infarction and MPO activity at 20h after reperfusion. These effects of cannabidiol were not inhibited by either SR141716 or AM630. Cannabidiol inhibited the MPO-positive cells expressing HMGB1 and also decreased the expression level of HMGB1 in plasma. In addition, cannabidiol decreased the number of Iba1- and GFAP-positive cells at 3 days after cerebral ischemia. Moreover, cannabidiol improved neurological score and motor coordination on the rota-rod test. Our results suggest that cannabidiol inhibits monocyte/macropharge expressing HMGB1 followed by preventing glial activation and neurological impairment induced by cerebral ischemia. Cannabidiol will open new therapeutic possibilities for post-ischemic injury via HMGB1-inhibiting mechanism.
Assuntos
Lesões Encefálicas/prevenção & controle , Canabidiol/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína HMGB1/metabolismo , Análise de Variância , Animais , Pressão Sanguínea/fisiologia , Lesões Encefálicas/etiologia , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Marcação In Situ das Extremidades Cortadas/métodos , Infarto da Artéria Cerebral Média/complicações , Masculino , Camundongos , Proteínas dos Microfilamentos , Atividade Motora/fisiologia , Exame Neurológico , Peroxidase/metabolismo , Fosfopiruvato Hidratase/metabolismo , Reperfusão , Sais de Tetrazólio , Fatores de TempoRESUMO
Behavioral and psychological symptoms of dementia (BPSD) are commonly seen in patients with Alzheimer's disease (AD) and other forms of senile dementia. BPSD have a serious impact on the quality of life of dementia patients, as well as their caregivers. However, an effective drug therapy for BPSD has not been established. Recently, the traditional Japanese medicine Yokukansan (YKS, Yi-gan san in Chinese) has been reported to improve BPSD in a randomized, single-blind, placebo-controlled study. Moreover, abnormalities of the serotonin (5-HT) system such as 5-HT2A receptors have been reported to be associated with BPSD of AD patients. In the present study, we investigated the effect of YKS on head-twitch response induced by 2,5-dimethoxy-4-iodoamphetamine (DOI, 5 mg/kg, i.p.) in mice, a behavioral response that is mediated, in part, by 5-HT2A receptors. Acute treatment with YKS (100 and 300 mg/kg, p.o.) had no effect on the DOI-induced head-twitch response, whilst 14 days repeated treatment with YKS (300 mg/kg, p.o.) significantly inhibited this response. Moreover, repeated treatment with YKS (300 mg/kg, p.o.) decreased expression of 5-HT2A receptors in the prefrontal cortex, which is part of the circuitry mediating the head-twitch response. These findings suggest that the inhibition of DOI-induced head-twitch response by YKS may be mediated, in part, by altered expression of 5-HT2A receptors in the prefrontal cortex, which suggests the involvement of the 5-HT system in psychopharmacological effects of YKS.
Assuntos
Anfetaminas/antagonistas & inibidores , Anfetaminas/toxicidade , Comportamento Animal/efeitos dos fármacos , Demência/induzido quimicamente , Demência/psicologia , Medicamentos de Ervas Chinesas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptor 5-HT2A de Serotonina/biossíntese , Agonistas do Receptor de Serotonina/toxicidade , Anfetaminas/administração & dosagem , Animais , Western Blotting , Catalepsia/induzido quimicamente , Catalepsia/psicologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Microinjeções , Atividade Motora/efeitos dos fármacos , Equilíbrio Postural/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Agonistas do Receptor de Serotonina/administração & dosagemRESUMO
Perry syndrome is a rare neurodegenerative disease characterized by parkinsonism, depression/apathy, weight loss, and central hypoventilation. Our previously-conducted genome-wide association scan and subsequent studies identified nine mutations in DCTN1, the largest protein subunit of the dynactin complex, in patients with Perry syndrome. These included G71A in the microtubule-binding cytoskeleton-associated protein Gly-rich domain of p150Glued. The dynactin complex is essential for function of the microtubule-based cytoplasmic retrograde motor dynein. To test the hypothesis that the G71A mutation in the DCTN1 gene is sufficient to cause Perry syndrome, we generated DCTN1G71A transgenic mice. These mice initially developed normally, but young animals showed decreased exploratory activity and aged animals showed impaired motor coordination. These behavioral defects parallel apathy-like symptoms and parkinsonism encountered in Perry syndrome. TDP-43 aggregates were not detected in the substantia nigra and cerebral cortex of the transgenic mice, although pathological aggregates of TDP-43 have been considered a major neuropathological feature of Perry syndrome. Our study reveals that a single mutation in the DCTN1 gene recapitulates symptoms of Perry syndrome patients, and provides evidence that DCTN1G71A transgenic mice represent a novel rodent model of Perry syndrome.
Assuntos
Complexo Dinactina/genética , Hipoventilação/genética , Mutação/genética , Transtornos Parkinsonianos/genética , Animais , Depressão/genética , Modelos Animais de Doenças , Complexo Dinactina/metabolismo , Estudo de Associação Genômica Ampla , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Japanese Angelica acutiloba root (Angelica root) is included in several Kampo medicines including Yokukansan (YKS). Angelica root and YKS are used for the treatment of a variety of psychological and neurodegenerative disorders. Development of safe and effective therapeutic agents against cerebrovascular disorders will improve the treatment of patients with dementia. AIM OF THE STUDY: The effect of Angelica root and YKS on ischemia-impaired memory has not yet been fully investigated. The present study investigated whether Angelica root is also involved in memory improving and neuroprotective effect of YKS in a model of cerebrovascular ischemia. MATERIALS AND METHODS: Male Wistar rats grouped into sham rats received saline, and other three groups subjected to repeated cerebral ischemia induced by 4-vessel occlusion (4-VO), received a 7-day oral administration of either saline, Angelica root or YKS. Memory was evaluated by eight-arm radial maze task. Acetylcholine release (ACh) in the dorsal hippocampus was investigated by microdialysis-HPLC. Apoptosis was determined by terminal deoxynucleotidyl transferase (TdT)-mediated fluorescein-deoxyuridine triphosphate (dUTP) nick-end labeling. RESULTS: Ischemia induced apoptosis, reduced release of ACh, and impaired the memory (increased error choices and decreased correct choices). Angelica root and YKS improved the memory deficits, upregulated the release of ACh and prevented 4-VO-induced hippocampal apoptosis. CONCLUSION: The dual ACh-increasing and neuroprotective effect of Angelica root could make it a promising therapeutic agent useful for the treatment of symptoms of cerebrovascular dementia. Angelica root could be one of the components contributing to the memory-improving and neuroprotective effects of YKS.
Assuntos
Acetilcolina/metabolismo , Angelica , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Hipocampo/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Raízes de Plantas , Angelica/química , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/psicologia , Citoproteção , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/isolamento & purificação , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Transtornos da Memória/psicologia , Fármacos Neuroprotetores/isolamento & purificação , Fitoterapia , Raízes de Plantas/química , Plantas Medicinais , Ratos Wistar , Regulação para CimaRESUMO
Amyloid precursor protein (APP), a type I transmembrane protein, has different aspects, namely, performs essential physiological functions and produces ß-amyloid peptide (Aß). Overexpression of neuronal APP is responsible for synaptic dysfunction. In the central nervous system, astrocytes - a major glial cell type - have an important role in the regulation of synaptic transmission. Although APP is expressed in astrocytes, it remains unclear whether astrocytic overexpression of mutant APP affects synaptic transmission. In this study, the effect of astrocytic overexpression of a mutant APP on the excitatory synaptic transmission was investigated using coculture system of the transgenic (Tg) cortical astrocytes that express the human APP695 polypeptide with the double mutation K670N + M671L found in a large Swedish family with early onset Alzheimer's disease, and wild-type hippocampal neuron. Significant secretion of Aß 1-40 and 1-42 was observed in cultured cortical astrocytes from the Tg2576 transgenic mouse that genetically overexpresses Swedish mutant APP. Under the condition, Tg astrocytes did not affect excitatory synaptic transmission of cocultured wild-type neurons. However, aged Tg astrocytes cultured for 9 weeks elicited a significant decrease in excitatory synaptic transmission in cocultured neurons. Moreover, a reduction in the number of readily releasable synaptic vesicles accompanied a decrease in the number of excitatory synapses in neurons cocultured with aged Tg astrocytes. These observations indicate that astrocytic expression of the mutant APP is involved in the downregulation of synaptic transmission with age.
Assuntos
Precursor de Proteína beta-Amiloide/biossíntese , Astrócitos/fisiologia , Senescência Celular/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Mutação/fisiologia , Transmissão Sináptica/fisiologia , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , SuéciaRESUMO
The insulinotropic activity of KCP256 [(R)-8-benzyl-2-cyclopentyl-7, 8-dihydro-4-propyl-1H-imidazo[2,1-i]purin-5(4H)-one hydrochloride] was examined using MIN6 cells (a pancreatic beta-cell line) and pancreatic islets isolated from rats. Unlike sulfonylurea anti-diabetic drugs, KCP256 dose-dependently (0.1-10 microM) enhanced insulin secretion from MIN6 cells and its insulinotropic effect was exerted only at high concentrations of glucose (8.3-22 mM) but not at low concentrations of glucose (3.3-5.5 mM). Furthermore, the action mechanism of KCP256 was different because, unlike sulfonylurea drugs, KCP256 did not displace the binding of [3H]glibenclamide, and did not inhibit the 86Rb+ efflux nor K(ATP) channel activity. In isolated islets, KCP256 also enhanced insulin secretion in a dose- and a glucose-concentration-dependent manner. Plasma levels of insulin after glucose challenge in KCP256-administrated rats were higher than those in vehicle-administrated animals, indicating that KCP256 can enhance insulin secretion in vivo. Since the insulinotropic activity of KCP256 only occurs at high concentrations of glucose, this novel drug may exhibit a decreased risk of drug-induced hypoglycemia compared with sulfonylurea drugs when treating patients with diabetes.
Assuntos
Glucose/farmacologia , Hipoglicemiantes/farmacologia , Imidazóis/farmacologia , Insulina/metabolismo , Purinas/farmacologia , Purinonas/farmacologia , Animais , Glicemia/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Teste de Tolerância a Glucose , Hipoglicemiantes/administração & dosagem , Técnicas In Vitro , Insulina/sangue , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Purinonas/administração & dosagem , Ratos , Ratos WistarRESUMO
Rheb is a small GTP-binding protein and its GTPase activity is activated by the complex of Tsc1 and Tsc2 whose mutations cause tuberous sclerosis complex (TSC). We previously reported that cultured TSC neurons showed impaired spine synapse morphogenesis in an mTORC1-independent manner. Here we show that the PDZ protein syntenin preferentially binds to the GDP-bound form of Rheb. The levels of syntenin are significantly higher in TSC neurons than in wild-type neurons because the Rheb-GDP-syntenin complex is prone to proteasomal degradation. Accumulated syntenin in TSC neurons disrupts spine synapse formation through inhibition of the association between syndecan-2 and calcium/calmodulin-dependent serine protein kinase. Instead, syntenin enhances excitatory shaft synapse formation on dendrites by interacting with ephrinB3. Downregulation of syntenin in TSC neurons restores both spine and shaft synapse densities. These findings suggest that Rheb-syntenin signalling may be a novel therapeutic target for abnormalities in spine and shaft synapses in TSC neurons.
Assuntos
Espinhas Dendríticas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Sinteninas/metabolismo , Esclerose Tuberosa/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Efrina-B3/metabolismo , Guanosina Difosfato/metabolismo , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Microscopia Confocal , Neurônios/citologia , Técnicas de Patch-Clamp , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Ratos , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genéticaRESUMO
K579 ((S)-1-[4-methyl-1-(2-pyrimidinyl)-4-piperidylamino]acetyl-2-pyrrolidinecarbonitrile), which is a long-acting and a slow binding dipeptidyl peptidase IV inhibitor, preserved the endogenously secreted active forms of glucagon-like peptide-1, augmented the insulin response and ameliorated the glucose excursion during oral glucose tolerance test in rats. In this study, we measured plasma concentrations of K579 after oral administration to rats. However, K579 was eliminated rapidly from plasma after oral administration to rats. Therefore, we postulated that there are active metabolites of K579 in rat plasma. We investigated the effect of K579 on plasma dipeptidyl peptidase IV activity using bile duct-cannulated rats. The duration of inhibitory action of plasma dipeptidyl peptidase IV after the administration of K579 in bile duct-cannulated rats was shorter than that in sham-operated rats. Moreover, we investigated the effect of bile obtained from K579-treated rat on plasma dipeptidyl peptidase IV activity in normal rats. The bile collected from K579-treated rats exhibited tardive and potent inhibitory activity of normal rat plasma. These results suggest that K579 sustained the duration of inhibitory action of plasma dipeptidyl peptidase IV by the character as a slow-binding inhibitor and, as well, by the presence of metabolites of K579, which exhibit the inhibitory activity of dipeptidyl peptidase IV.
Assuntos
Dipeptidil Peptidase 4/sangue , Nitrilas/farmacocinética , Pirrolidinas/farmacocinética , Administração Oral , Animais , Área Sob a Curva , Bile/fisiologia , Ductos Biliares/cirurgia , Cateterismo , Masculino , Nitrilas/sangue , Nitrilas/metabolismo , Pirrolidinas/sangue , Pirrolidinas/metabolismo , Ratos , Ratos Wistar , Fatores de TempoRESUMO
Dipeptidyl peptidase IV inhibitors are expected to be categorized in a new type of antidiabetic drugs. We had developed a long-acting dipeptidyl peptidase IV inhibitor, K579 [(S)-1-[4-methyl-1-(2-pyrimidinyl)-4-piperidylamino]acetyl-2-pyrrolidinecarbonitrile]. The aim of present study was to characterize the pharmacological profiles of K579. In normal rats, K579 suppressed the blood glucose elevation after an oral glucose tolerance test with the increment of plasma insulin and active forms of glucagon-like peptide-1 (GLP-1). During repetitive glucose loading using Zucker fatty rats, pretreatment with K579 attenuated the glucose excursion after the second glucose loading as well as the first glucose loading without inducing hypoglycemia. The kinetic study using cell extract revealed that K579 was a more potent and slower binding inhibitor than the existing dipeptidyl peptidase IV inhibitor (NVP-DPP728, 1-[[[2-[(5-cyanopyridin-2-yl)amino]ethyl]amino]acetyl]-2-cyano-(S)-pyrrolidine). These profiles of K579 might be advantageous over the existing dipeptidyl peptidase IV inhibitor with respect to less dosing frequency.
Assuntos
Dipeptidil Peptidase 4/metabolismo , Hipoglicemiantes/farmacologia , Nitrilas/farmacologia , Nitrilas/farmacocinética , Pirrolidinas/farmacologia , Pirrolidinas/farmacocinética , Administração Oral , Animais , Glicemia/efeitos dos fármacos , Dipeptidil Peptidase 4/sangue , Relação Dose-Resposta a Droga , Teste de Tolerância a Glucose , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/metabolismo , Insulina/sangue , Cinética , Masculino , Nitrilas/administração & dosagem , Ligação Proteica , Pirrolidinas/administração & dosagem , Ratos , Ratos Wistar , Ratos Zucker , Fatores de TempoRESUMO
Mutations in the Tsc1 or Tsc2 genes cause tuberous sclerosis complex (TSC). Tsc1 and Tsc2 proteins form a complex that inhibits mammalian target of rapamycin complex 1 (mTORC1) signalling through Rheb-GTPase. We found that Tsc2(+/-) neurons showed impaired spine synapse formation, which was resistant to an mTORC1 inhibitor. Knockdown of mTOR also failed to restore these abnormalities, suggesting mTORC may not participate in impaired spinogenesis in Tsc2(+/-) neurons. To address whether Rheb activation impairs spine synapse formation, we expressed active and inactive forms of Rheb in WT and Tsc2(+/-) neurons, respectively. Expression of active Rheb abolished dendritic spine formation in WT neurons, whereas inactive Rheb restored spine synapse formation in Tsc2(+/-) neurons. Moreover, inactivation of Rheb with farnesyl transferase inhibitors recovered spine synapse morphogenesis in Tsc2(+/-) neurons. In conclusion, dendritic spine abnormalities in TSC neurons may be caused through activation of Rheb, but not through of mTORC1.
Assuntos
Espinhas Dendríticas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células Cultivadas , Espinhas Dendríticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Morfogênese , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Ratos , Ratos Transgênicos , Sinapses/patologia , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genéticaRESUMO
Epidemiological studies suggest that cerebral ischemia may contribute to the onset and progression of Alzheimer's disease (AD). However, the mechanism by which ischemic events trigger the onset and progression of AD is poorly understood. Acetylcholine (ACh) is one of the key factors in memory, and cholinergic disturbance is a primary feature of AD. To clarify whether cholinergic disturbance is implicated in the exacerbation of AD symptoms by cerebral ischemia, memory impairment and hippocampal ACh release were examined in young (4-6 month-old) Tg2576 (Tg) mice, an AD transgenic mouse model, and in age-matched control mice with or without transient cerebral ischemia (bilateral common carotid artery occlusion: 2VO). 2VO induced memory impairment and decreased high-K(+)-evoked ACh release in Tg mice, but not in control mice. There were no differences in memory and ACh release between sham-operated control and Tg mice. Increases in ß-amyloid (Aß) 40 and Aß42 were also observed in 2VO-operated Tg mice compared with sham-operated Tg mice, but no evident amyloid plaques or neuronal loss were found in the hippocampus of these mice. These results suggest that the memory of Tg mice is affected by 2VO, and the memory impairment may be due to cholinergic dysfunction induced by Aß. Our findings support the idea that cerebral hypoperfusion could be a risk factor for AD.
Assuntos
Acetilcolina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Isquemia Encefálica/complicações , Encéfalo/metabolismo , Transtornos da Memória/etiologia , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Estenose das Carótidas/complicações , Hipocampo/metabolismo , Humanos , Aprendizagem em Labirinto , Camundongos , Camundongos MutantesRESUMO
The astrocyte is a major glial cell type of the brain, and plays key roles in the formation, maturation, stabilization and elimination of synapses. Thus, changes in astrocyte condition and age can influence information processing at synapses. However, whether and how aging astrocytes affect synaptic function and maturation have not yet been thoroughly investigated. Here, we show the effects of prolonged culture on the ability of astrocytes to induce synapse formation and to modify synaptic transmission, using cultured autaptic neurons. By 9 weeks in culture, astrocytes derived from the mouse cerebral cortex demonstrated increases in ß-galactosidase activity and glial fibrillary acidic protein (GFAP) expression, both of which are characteristic of aging and glial activation in vitro. Autaptic hippocampal neurons plated on these aging astrocytes showed a smaller amount of evoked release of the excitatory neurotransmitter glutamate, and a lower frequency of miniature release of glutamate, both of which were attributable to a reduction in the pool of readily releasable synaptic vesicles. Other features of synaptogenesis and synaptic transmission were retained, for example the ability to induce structural synapses, the presynaptic release probability, the fraction of functional presynaptic nerve terminals, and the ability to recruit functional AMPA and NMDA glutamate receptors to synapses. Thus the presence of aging astrocytes affects the efficiency of synaptic transmission. Given that the pool of readily releasable vesicles is also small at immature synapses, our results are consistent with astrocytic aging leading to retarded synapse maturation.
Assuntos
Astrócitos/fisiologia , Senescência Celular/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Técnicas de Cocultura , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos ICR , Microscopia Confocal , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Vesículas Sinápticas/metabolismo , Fatores de Tempo , beta-Galactosidase/metabolismoRESUMO
Behavioral and psychological symptoms of dementia (BPSD) are commonly seen in patients with dementia. Current pharmacological approaches to treatment are inadequate, despite the availability of serotonergic agents to ameliorate anxiety, one of the symptoms of BPSD. The herbal medicine yokukansan has been demonstrated to improve BPSD in a randomized, single-blinded, placebo-controlled study. However, the mechanisms of the anxiolytic effect of yokukansan have not been clarified. There are also no reports on the anxiolytic effect of yokukansan in cerebrovascular ischemia models. In this study, we examined whether rats subjected to repeated cerebral ischemia exhibited anxiety-like behavior in a plus-maze task, a light/dark box test and an open-field task. We then investigated the effect of yokukansan on anxiety-like behavior in ischemic rats. Repeated ischemia was induced by the four-vessel occlusion method in which a 10-min ischemic episode was repeated once after 60 min. Yokukansan was orally administered once a day for 14 days from 7 days before ischemia induction. The last administration was performed 1 h before the behavioral experiments. The ischemic rats showed anxiety-like behavior in all three tasks, suggesting that this rat may be a good model for anxiety in cerebrovascular dementia. Yokukansan exhibited anxiolytic effects on the anxiety-like behavior in rats subjected to repeated cerebral ischemia, and exerted antagonistic effects on the wet-dog shakes induced by 1-(2,5-dimethoxy-4-indophenyl)-2-amino propane, a serotonin receptor (5-HT(2A)) agonist. This study revealed that yokukansan shows anxiolytic effects not only in normal animals but also in cerebrovascular model rats.