Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Theor Biol ; 538: 111015, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35016894

RESUMO

The central role of metabolism in cell functioning and adaptation has given rise to countless studies on the evolution of enzyme-coding genes and network topology. However, very few studies have addressed the question of how enzyme concentrations change in response to positive selective pressure on the flux, considered a proxy of fitness. In particular, the way cellular constraints, such as resource limitations and co-regulation, affect the adaptive landscape of a pathway under selection has never been analyzed theoretically. To fill this gap, we developed a model of the evolution of enzyme concentrations that combines metabolic control theory and an adaptive dynamics approach, and integrates possible dependencies between enzyme concentrations. We determined the evolutionary equilibria of enzyme concentrations and their range of neutral variation, and showed that they differ with the properties of the enzymes, the constraints applied to the system and the initial enzyme concentrations. Simulations of long-term evolution confirmed all analytical and numerical predictions, even though we relaxed the simplifying assumptions used in the analytical treatment.


Assuntos
Evolução Molecular , Redes e Vias Metabólicas , Adaptação Fisiológica/genética , Evolução Biológica , Seleção Genética
2.
J Theor Biol ; 239(4): 507-15, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16199059

RESUMO

In this paper we present an individual-based model describing the foraging behavior of ants moving in an artificial network of tunnels in which several interconnected paths can be used to reach a single food source. Ants lay a trail pheromone while moving in the network and this pheromone acts as a system of mass recruitment that attracts other ants in the network. The rules implemented in the model are based on measures of the decisions taken by ants at tunnel bifurcations during real experiments. The collective choice of the ants is estimated by measuring their probability to take a given path in the network. Overall, we found a good agreement between the results of the simulations and those of the experiments, showing that simple behavioral rules can lead ants to find the shortest paths in the network. The match between the experiments and the model, however, was better for nestbound than for outbound ants. A sensitivity study of the model suggests that the bias observed in the choice of the ants at asymmetrical bifurcations is a key behavior to reproduce the collective choice observed in the experiments.


Assuntos
Comunicação Animal , Formigas/fisiologia , Simulação por Computador , Comportamento Alimentar , Animais , Comportamento de Escolha , Feromônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA