Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Dev Biol ; 416(1): 136-148, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27265864

RESUMO

Both Fras1 and Itga8 connect mesenchymal cells to epithelia by way of an extracellular 'Fraser protein complex' that functions in signaling and adhesion; these proteins are vital to the development of several vertebrate organs. We previously found that zebrafish fras1 mutants have craniofacial defects, specifically, shortened symplectic cartilages and cartilage fusions that spare joint elements. During a forward mutagenesis screen, we identified a new zebrafish mutation, b1161, that we show here disrupts itga8, as confirmed using CRISPR-generated itga8 alleles. fras1 and itga8 single mutants and double mutants have similar craniofacial phenotypes, a result expected if loss of either gene disrupts function of the Fraser protein complex. Unlike fras1 mutants or other Fraser-related mutants, itga8 mutants do not show blistered tail fins. Thus, the function of the Fraser complex differs in the craniofacial skeleton and the tail fin. Focusing on the face, we find that itga8 mutants consistently show defective outpocketing of a late-forming portion of the first pharyngeal pouch, and variably express skeletal defects, matching previously characterized fras1 mutant phenotypes. In itga8 and fras1 mutants, skeletal severity varies markedly between sides, indicating that both mutants have increased developmental instability. Whereas fras1 is expressed in epithelia, we show that itga8 is expressed complementarily in facial mesenchyme. Paired with the observed phenotypic similarity, this expression indicates that the genes function in epithelial-mesenchymal interactions. Similar interactions between Fras1 and Itga8 have previously been found in mouse kidney, where these genes both regulate Nephronectin (Npnt) protein abundance. We find that zebrafish facial tissues express both npnt and the Fraser gene fibrillin2b (fbn2b), but their transcript levels do not depend on fras1 or itga8 function. Using a revertible fras1 allele, we find that the critical window for fras1 function in the craniofacial skeleton is between 1.5 and 3 days post fertilization, which coincides with the onset of fras1-dependent and itga8-dependent morphogenesis. We propose a model wherein Fras1 and Itga8 interact during late pharyngeal pouch morphogenesis to sculpt pharyngeal arches through epithelial-mesenchymal interactions, thereby stabilizing the developing craniofacial skeleton.


Assuntos
Região Branquial/embriologia , Epitélio/embriologia , Proteínas da Matriz Extracelular/fisiologia , Integrinas/fisiologia , Mesoderma/embriologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Indução Embrionária , Epitélio/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Ossos Faciais/embriologia , Fibrilina-2/metabolismo , Integrinas/genética , Mesoderma/metabolismo , Morfogênese , Mutação , RNA Mensageiro , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
2.
Development ; 139(15): 2804-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22782724

RESUMO

Lesions in the epithelially expressed human gene FRAS1 cause Fraser syndrome, a complex disease with variable symptoms, including facial deformities and conductive hearing loss. The developmental basis of facial defects in Fraser syndrome has not been elucidated. Here we show that zebrafish fras1 mutants exhibit defects in facial epithelia and facial skeleton. Specifically, fras1 mutants fail to generate a late-forming portion of pharyngeal pouch 1 (termed late-p1) and skeletal elements adjacent to late-p1 are disrupted. Transplantation studies indicate that fras1 acts in endoderm to ensure normal morphology of both skeleton and endoderm, consistent with well-established epithelial expression of fras1. Late-p1 formation is concurrent with facial skeletal morphogenesis, and some skeletal defects in fras1 mutants arise during late-p1 morphogenesis, indicating a temporal connection between late-p1 and skeletal morphogenesis. Furthermore, fras1 mutants often show prominent second arch skeletal fusions through space occupied by late-p1 in wild type. Whereas every fras1 mutant shows defects in late-p1 formation, skeletal defects are less penetrant and often vary in severity, even between the left and right sides of the same individual. We interpret the fluctuating asymmetry in fras1 mutant skeleton and the changes in fras1 mutant skeletal defects through time as indicators that skeletal formation is destabilized. We propose a model wherein fras1 prompts late-p1 formation and thereby stabilizes skeletal formation during zebrafish facial development. Similar mechanisms of stochastic developmental instability might also account for the high phenotypic variation observed in human FRAS1 patients.


Assuntos
Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Peixe-Zebra/fisiologia , Animais , Osso e Ossos/metabolismo , Cartilagem/citologia , Cartilagem/metabolismo , Cruzamentos Genéticos , Endoderma/metabolismo , Síndrome de Fraser/genética , Humanos , Hibridização In Situ , Modelos Biológicos , Modelos Genéticos , Mutação , Esqueleto , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
Dev Biol ; 381(1): 276-85, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23747543

RESUMO

During development of the mouse forebrain interneurons, the Dlx genes play a key role in a gene regulatory network (GRN) that leads to the GABAergic phenotype. Here, we have examined the regulatory relationships between the ascl1a, dlx, and gad1b genes in the zebrafish forebrain. Expression of ascl1a overlaps with dlx1a in the telencephalon and diencephalon during early forebrain development. The loss of Ascl1a function results in a loss of dlx expression, and subsequent losses of dlx5a and gad1b expression in the diencephalic prethalamus and hypothalamus. Loss of Dlx1a and Dlx2a function, and, to a lesser extent, of Dlx5a and Dlx6a, impairs gad1b expression in the prethalamus and hypothalamus. We conclude that dlx1a/2a act downstream of ascl1a but upstream of dlx5a/dlx6a and gad1b to activate GABAergic specification. This pathway is conserved in the diencephalon, but has diverged between mammals and teleosts in the telencephalon.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Glutamato Descarboxilase/fisiologia , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Diencéfalo/metabolismo , Neurônios GABAérgicos/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Interneurônios/metabolismo , Mutação , Fenótipo , Telencéfalo/metabolismo
4.
Development ; 137(15): 2507-17, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20573696

RESUMO

The ventrally expressed secreted polypeptide endothelin1 (Edn1) patterns the skeleton derived from the first two pharyngeal arches into dorsal, intermediate and ventral domains. Edn1 activates expression of many genes, including hand2 and Dlx genes. We wanted to know how hand2/Dlx genes might generate distinct domain identities. Here, we show that differential expression of hand2 and Dlx genes delineates domain boundaries before and during cartilage morphogenesis. Knockdown of the broadly expressed genes dlx1a and dlx2a results in both dorsal and intermediate defects, whereas knockdown of three intermediate-domain restricted genes dlx3b, dlx4b and dlx5a results in intermediate-domain-specific defects. The ventrally expressed gene hand2 patterns ventral identity, in part by repressing dlx3b/4b/5a. The jaw joint is an intermediate-domain structure that expresses nkx3.2 and a more general joint marker, trps1. The jaw joint expression of trps1 and nkx3.2 requires dlx3b/4b/5a function, and expands in hand2 mutants. Both hand2 and dlx3b/4b/5a repress dorsal patterning markers. Collectively, our work indicates that the expression and function of hand2 and Dlx genes specify major patterning domains along the dorsoventral axis of zebrafish pharyngeal arches.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Padronização Corporal , Osso e Ossos/metabolismo , Região Branquial/embriologia , Região Branquial/fisiologia , Mutação , Estrutura Terciária de Proteína , Peixe-Zebra
5.
Dev Dyn ; 239(8): 2298-306, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20658694

RESUMO

The Dlx genes encode a family of transcription factors important for the development of the vertebrate forebrain. These genes have very similar expression domains during the development of the telencephalon in mice and play a role in gamma-aminobutyric acid (GABAergic) interneuron differentiation. We have used triple fluorescent in situ hybridization to study the relative expression domains of the dlx and gad1 genes in the zebrafish telencephalon and diencephalon. We also generated transgenic zebrafish with regulatory elements from the zebrafish dlx1a/2a locus. The zebrafish dlx regulatory elements recapitulated dlx expression in the forebrain and mimicked the relationship between the expression of the dlx genes and gad1. Finally, we show that a putative enhancer located downstream of dlx2b can also activate reporter gene expression in a tissue-specific manner similar to endogenous dlx2b expression. Our results indicate the dlx genes are regulated by an evolutionarily conserved genetic pathway and may play a role in GABAergic interneuron differentiation in the zebrafish forebrain.


Assuntos
Glutamato Descarboxilase/análise , Proteínas de Homeodomínio/análise , Prosencéfalo/metabolismo , Fatores de Transcrição/análise , Animais , Diencéfalo/química , Hibridização in Situ Fluorescente , Interneurônios/citologia , Organismos Geneticamente Modificados , Prosencéfalo/crescimento & desenvolvimento , Telencéfalo/química , Peixe-Zebra , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA