Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biometals ; 37(2): 275-288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37930483

RESUMO

Ovarian cancer (OC) is a lethal gynecologic cancer in industrialized countries. Treatments for OC include the surgical removal and chemotherapy. In the last decades, improvements have been made in the surgery technologies, drug combinations and administration protocols, and in diagnosis. However, mortality from OC is still high owing to recurrences and insurgence of drug resistance. Accordingly, it is urgent the development of novel agents capable to effectively target OC. In this respect, tyrosine kinase inhibitors (TKIs) may play an important role. Most of TKIs developed and tested so far are organic. However, owing to their chemical versatility, also metals can be exploited to design selective and potent TKIs. We provide a short and easy-to-read overview on the main organic TKIs with a summary of those that entered clinical trials. Additionally, we describe the potential of metal-based TKIs, focusing on this overlooked family of compounds that may significantly contribute towards the concept of precision-medicine.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico
2.
Arch Pharm (Weinheim) ; 357(3): e2300583, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38110703

RESUMO

Immunotherapy has emerged as a game-changing approach for cancer treatment. Although monoclonal antibodies (mAbs) targeting the programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1) axis have entered the market revolutionizing the treatment landscape of many cancer types, small molecules, although presenting several advantages including the possibility of oral administration and/or reduced costs, struggled to enter in clinical trials, suffering of water insolubility and/or inadequate potency compared with mAbs. Thus, the search for novel scaffolds for both the design of effective small molecules and possible synergistic strategies is an ongoing field of interest. In an attempt to find novel chemotypes, a virtual screening approach was employed, resulting in the identification of new chemical entities with a certain binding capability, the most versatile of which was the benzimidazole-containing compound 10. Through rational design, a small library of its derivatives was synthesized and evaluated. The homogeneous time-resolved fluorescence (HTRF) assay revealed that compound 17 shows the most potent inhibitory activity (IC50 ) in the submicromolar range and notably, differently from the major part of PD-L1 inhibitors, exhibits satisfactory water solubility properties. These findings highlight the potential of benzimidazole-based compounds as novel promising candidates for PD-L1 inhibition.


Assuntos
Compostos de Bifenilo , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Ligantes , Relação Estrutura-Atividade , Benzimidazóis/farmacologia , Água
3.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731618

RESUMO

Neurodegeneration is a gradual decay process leading to the depletion of neurons in both the central and peripheral nervous systems, ultimately resulting in cognitive dysfunctions and the deterioration of brain functions, alongside a decline in motor skills and behavioral capabilities. Neurodegenerative disorders (NDs) impose a substantial socio-economic strain on society, aggravated by the advancing age of the world population and the absence of effective remedies, predicting a negative future. In this context, the urgency of discovering viable therapies is critical and, despite significant efforts by medicinal chemists in developing potential drug candidates and exploring various small molecules as therapeutics, regrettably, a truly effective treatment is yet to be found. Nitrogen heterocyclic compounds, and particularly those containing the indole nucleus, which has emerged as privileged scaffold, have attracted particular attention for a variety of pharmacological applications. This review analyzes the rational design strategy adopted by different research groups for the development of anti-neurodegenerative indole-based compounds which have the potential to modulate various molecular targets involved in NDs, with reference to the most recent advances between 2018 and 2023.


Assuntos
Indóis , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Indóis/química , Indóis/farmacologia , Indóis/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/química
4.
Biometals ; 36(5): 961-968, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36869967

RESUMO

Auranofin ([1-(thio-κS)-ß-D-glucopyranose-2,3,4,6-tetraacetato](triethylphosphine)-gold) is a leading gold-based drug clinically used to treat arthritis. In the last years, it entered various drug reprofiling programs, and it has been found promising against various forms of tumor, including ovarian cancer. Evidence showed as its antiproliferative profile mainly depends on the inhibition of thioredoxin reductase (TrxR), being this mitochondrial system its main target. In this context, we report here the synthesis and biological evaluation of a novel complex designed as auranofin analogue obtained through the conjugation of a phenylindolylglyoxylamide ligand (which belongs to the so-called PIGA TSPO ligand family) with the auranofin-derived cationic fragment [Au(PEt3)]+. This complex is characterized by two parts. The phenylindolylglyoxylamide moiety, owing to its high affinity for TSPO (in the low nM range) should drive the compound to target mitochondria, whereas the [Au(PEt3)]+ cation is the actual anticancer-active molecular fragment. Overall, we wanted to offer the proof-of-concept that by coupling PIGA ligands to anticancer gold active moieties, it is possible to preserve and even improve anticancer effects, opening the avenue to a reliable approach for targeted therapy.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Auranofina , Farmacóforo , Ligantes , Antineoplásicos/química , Ouro/farmacologia , Ouro/química , Tiorredoxina Dissulfeto Redutase , Neoplasias Ovarianas/tratamento farmacológico , Linhagem Celular Tumoral , Receptores de GABA
5.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003321

RESUMO

Metformin (Met) is the first-line therapy in type 2 diabetes mellitus but, in last few years, it has also been evaluated as anti-cancer agent. Several pathways, such as AMPK or PI3K/Akt/mTOR, are likely to be involved in the anti-cancer Met activity. In addition, hydrogen sulfide (H2S) and H2S donors have been described as anti-cancer agents affecting cell-cycle and inducing apoptosis. Among H2S donors, isothiocyanates are endowed with a further anti-cancer mechanism: the inhibition of the histone deacetylase enzymes. On this basis, a hybrid molecule (Met-ITC) obtained through the addition of an isothiocyanate moiety to the Met molecule was designed and its ability to release Met has been demonstrated. Met-ITC exhibited more efficacy and potency than Met in inhibiting cancer cells (AsPC-1, MIA PaCa-2, MCF-7) viability and it was less effective on non-tumorigenic cells (MCF 10-A). The ability of Met-ITC to release H2S has been recorded both in cell-free and in cancer cells assays. Finally, its ability to affect the cell cycle and to induce both early and late apoptosis has been demonstrated on the most sensitive cell line (MCF-7). These results confirmed that Met-ITC is a new hybrid molecule endowed with potential anti-cancer properties derived both from Met and H2S.


Assuntos
Diabetes Mellitus Tipo 2 , Sulfeto de Hidrogênio , Metformina , Neoplasias , Humanos , Metformina/farmacologia , Fosfatidilinositol 3-Quinases , Neoplasias/tratamento farmacológico , Linhagem Celular , Isotiocianatos/farmacologia , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo
6.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985576

RESUMO

Glioblastoma (GBM) is the most aggressive and frequent primary brain tumor, with a poor prognosis and the highest mortality rate. Currently, GBM therapy consists of surgical resection of the tumor, radiotherapy, and adjuvant chemotherapy with temozolomide. Consistently, there are poor treatment options and only modest anticancer efficacy is achieved; therefore, there is still a need for the development of new effective therapies for GBM. Indole is considered one of the most privileged scaffolds in heterocyclic chemistry, so it may serve as an effective probe for the development of new drug candidates against challenging diseases, including GBM. This review analyzes the therapeutic benefit and clinical development of novel indole-based derivatives investigated as promising anti-GBM agents. The existing indole-based compounds which are in the pre-clinical and clinical stages of development against GBM are reported, with particular reference to the most recent advances between 2013 and 2022. The main mechanisms of action underlying their anti-GBM efficacy, such as protein kinase, tubulin and p53 pathway inhibition, are also discussed. The final goal is to pave the way for medicinal chemists in the future design and development of novel effective indole-based anti-GBM agents.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Temozolomida/farmacologia , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Encefálicas/metabolismo
7.
Arch Pharm (Weinheim) ; 355(11): e2200295, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35904260

RESUMO

A series of novel 3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazine (BIT) derivatives were designed and synthesized. In vitro antiproliferative activity was detected toward two human colorectal adenocarcinoma cell lines (CaCo-2 and HT-29) and one human dermal microvascular endothelial cell line (HMVEC-d). The most active compounds, namely 2-4 and 8, were further investigated to clarify the mechanism behind their biological activity. Through immunofluorescence assay, we identified the target of these molecules to be the microtubule cytoskeleton with subsequent formation of dense microtubule accumulation, particularly at the periphery of the cancer cells, as observed in paclitaxel-treated cells. Overall, these results highlight BIT derivatives as robust and feasible candidates deserving to be further developed in the search for novel potent antiproliferative microtubule-targeting agents.


Assuntos
Antineoplásicos , Triazinas , Humanos , Triazinas/farmacologia , Relação Estrutura-Atividade , Células CACO-2 , Proliferação de Células , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular
8.
Molecules ; 27(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458743

RESUMO

Carbonic anhydrases (CAs) are a family of ubiquitous metal enzymes catalyzing the reversible conversion of CO2 and H2O to HCO3- with the release of a proton. They play an important role in pH regulation and in the balance of body fluids and are involved in several functions such as homeostasis regulation and cellular respiration. For these reasons, they have been studied as targets for the development of agents for treating several pathologies. CA inhibitors have been used in therapy for a long time, especially as diuretics and for the treatment of glaucoma, and are being investigated for application in other pathologies including obesity, cancer, and epilepsy. On the contrary, CAs activators are still poorly studied. They are proposed to act as additional (other than histidine) proton shuttles in the rate-limiting step of the CA catalytic cycle, which is the generation of the active hydroxylated enzyme. Recent studies highlight the involvement of CAs activation in brain processes essential for the transmission of neuronal signals, suggesting CAs activation might represent a potential therapeutic approach for the treatment of Alzheimer's disease and other conditions characterized by memory impairment and cognitive problems. Actually, some compounds able to activate CAs have been identified and proposed to potentially resolve problems related to neurodegeneration. This review reports on the primary literature regarding the potential of CA activators for treating neurodegeneration-related diseases.


Assuntos
Anidrases Carbônicas , Ativadores de Enzimas , Epilepsia , Doenças Neurodegenerativas , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Anidrases Carbônicas/química , Catálise , Ativadores de Enzimas/uso terapêutico , Epilepsia/tratamento farmacológico , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Prótons
9.
J Enzyme Inhib Med Chem ; 36(1): 286-294, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33334192

RESUMO

Small-molecules acting as positive allosteric modulators (PAMs) of the A2B adenosine receptor (A2B AR) could potentially represent a novel therapeutic strategy for pathological conditions characterised by altered bone homeostasis, including osteoporosis. We investigated a library of compounds (4-13) exhibiting different degrees of chemical similarity with three indole derivatives (1-3), which have been recently identified by us as PAMs of the A2B AR able to promote mesenchymal stem cell differentiation and bone formation. Evaluation of mineralisation activity of 4-13 in the presence and in the absence of the agonist BAY60-6583 allowed the identification of lead compounds with therapeutic potential as anti-osteoporosis agents. Further biological characterisation of one of the most performing compounds, the benzofurane derivative 9, confirmed that such a molecule behaves as PAM of the A2B AR.


Assuntos
Indóis/farmacologia , Receptor A2B de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Indóis/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade
10.
J Enzyme Inhib Med Chem ; 36(1): 1874-1883, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34340614

RESUMO

A library of variously decorated N-phenyl secondary sulphonamides featuring the bicyclic tetrahydroquinazole scaffold was synthesised and biologically evaluated for their inhibitory activity against human carbonic anhydrase (hCA) I, II, IV, and IX. Of note, several compounds were identified showing submicromolar potency and excellent selectivity for the tumour-related hCA IX isoform. Structure-activity relationship data attained for various substitutions were rationalised by molecular modelling studies in terms of both inhibitory activity and selectivity.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Biologia Computacional/métodos , Isoenzimas/antagonistas & inibidores , Quinazolinas/química , Sulfonamidas/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Avaliação Pré-Clínica de Medicamentos , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade , Sulfonamidas/química
11.
J Enzyme Inhib Med Chem ; 36(1): 1783-1797, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34340630

RESUMO

Carbonic Anhydrase Activators (CAAs) could represent a novel approach for the treatment of Alzheimer's disease, ageing, and other conditions that require remedial achievement of spatial learning and memory therapy. Within a research project aimed at developing novel CAAs selective for certain isoforms, three series of indole-based derivatives were investigated. Enzyme activation assay on human CA I, II, VA, and VII isoforms revealed several effective micromolar activators, with promising selectivity profiles towards the brain-associated cytosolic isoform hCA VII. Molecular modelling studies suggested a theoretical model of the complex between hCA VII and the new activators and provide a possible explanation for their modulating as well as selectivity properties. Preliminary biological evaluations demonstrated that one of the most potent CAA 7 is not cytotoxic and is able to increase the release of the brain-derived neurotrophic factor (BDNF) from human microglial cells, highlighting its possible application in the treatment of CNS-related disorders.


Assuntos
Anidrases Carbônicas/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Indóis/farmacologia , Isoenzimas/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Anidrases Carbônicas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática , Ativadores de Enzimas/química , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Indóis/química , Isoenzimas/metabolismo , Microglia/citologia , Microglia/efeitos dos fármacos , Modelos Moleculares , Espectroscopia de Prótons por Ressonância Magnética , Especificidade por Substrato
12.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803741

RESUMO

Neuroactive steroids are potent modulators of microglial functions and are capable of counteracting their excessive reactivity. This action has mainly been ascribed to neuroactive steroids released from other sources, as microglia have been defined unable to produce neurosteroids de novo. Unexpectedly, immortalized murine microglia recently exhibited this de novo biosynthesis; herein, de novo neurosteroidogenesis was characterized in immortalized human microglia. The results demonstrated that C20 and HMC3 microglial cells constitutively express members of the neurosteroidogenesis multiprotein machinery-in particular, the transduceosome members StAR and TSPO, and the enzyme CYP11A1. Moreover, both cell lines produce pregnenolone and transcriptionally express the enzymes involved in neurosteroidogenesis. The high TSPO expression levels observed in microglia prompted us to assess its role in de novo neurosteroidogenesis. TSPO siRNA and TSPO synthetic ligand treatments were used to reduce and prompt TSPO function, respectively. The TSPO expression downregulation compromised the de novo neurosteroidogenesis and led to an increase in StAR expression, probably as a compensatory mechanism. The pharmacological TSPO stimulation the de novo neurosteroidogenesis improved in turn the neurosteroid-mediated release of Brain-Derived Neurotrophic Factor. In conclusion, these results demonstrated that de novo neurosteroidogenesis occurs in human microglia, unravelling a new mechanism potentially useful for future therapeutic purposes.


Assuntos
Microglia/metabolismo , Neuroesteroides/metabolismo , Receptores de GABA/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Neuroesteroides/química , Pregnenolona/química , Pregnenolona/metabolismo
13.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946600

RESUMO

Molecule interacting with CasL 2 (MICAL2), a cytoskeleton dynamics regulator, are strongly expressed in several human cancer types, especially at the invasive front, in metastasizing cancer cells and in the neo-angiogenic vasculature. Although a plethora of data exist and stress a growing relevance of MICAL2 to human cancer, it is worth noting that only one small-molecule inhibitor, named CCG-1423 (1), is known to date. Herein, with the aim to develop novel MICAL2 inhibitors, starting from CCG-1423 (1), a small library of new compounds was synthetized and biologically evaluated on human dermal microvascular endothelial cells (HMEC-1) and on renal cell adenocarcinoma (786-O) cells. Among the novel compounds, 10 and 7 gave interesting results in terms of reduction in cell proliferation and/or motility, whereas no effects were observed in MICAL2-knocked down cells. Aside from the interesting biological activities, this work provides the first structure-activity relationships (SARs) of CCG-1423 (1), thus providing precious information for the discovery of new MICAL2 inhibitors.


Assuntos
Anilidas , Benzamidas , Inibidores Enzimáticos , Proteínas dos Microfilamentos , Oxirredutases , Bibliotecas de Moléculas Pequenas , Humanos , Anilidas/química , Anilidas/farmacologia , Benzamidas/química , Benzamidas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/metabolismo , Estrutura Molecular , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
14.
Molecules ; 25(10)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429433

RESUMO

Several indole derivatives have been disclosed by our research groups that have been collaborating for nearly 25 years. The results of our investigations led to a variety of molecules binding selectively to different pharmacological targets, specifically the type A γ-aminobutyric acid (GABAA) chloride channel, the translocator protein (TSPO), the murine double minute 2 (MDM2) protein, the A2B adenosine receptor (A2B AR) and the Kelch-like ECH-associated protein 1 (Keap1). Herein, we describe how these works were conceived and carried out thanks to the versatility of indole nucleus to be exploited in the design and synthesis of drug-like molecules.


Assuntos
Diazepam/análogos & derivados , Desenho de Fármacos , Moduladores GABAérgicos/síntese química , Indóis/síntese química , Receptores de GABA-A/metabolismo , Animais , Diazepam/farmacologia , Moduladores GABAérgicos/farmacologia , Humanos , Indóis/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/agonistas , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Camundongos , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptor A2B de Adenosina/química , Receptor A2B de Adenosina/metabolismo , Receptores de GABA/química , Receptores de GABA/metabolismo , Receptores de GABA-A/química , Relação Estrutura-Atividade
15.
J Enzyme Inhib Med Chem ; 34(1): 1697-1710, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31537132

RESUMO

Inhibition of Carbonic Anhydrases (CAs) has been clinically exploited for many decades for a variety of therapeutic applications. Within a research project aimed at developing novel classes of CA inhibitors (CAIs) with a proper selectivity for certain isoforms, a series of derivatives featuring the 2-substituted-benzimidazole-6-sulfonamide scaffold, conceived as frozen analogs of Schiff bases and secondary amines previously reported in the literature as CAIs, were investigated. Enzyme inhibition assays on physiologically relevant human CA I, II, IX and XII isoforms revealed a number of potent CAIs, showing promising selectivity profiles towards the transmembrane tumor-associated CA IX and XII enzymes. Computational studies were attained to clarify the structural determinants behind the activities and selectivity profiles of the novel inhibitors.


Assuntos
Benzimidazóis/química , Inibidores da Anidrase Carbônica/síntese química , Sulfonamidas/síntese química , Aminas/química , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Humanos , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas do Tecido Nervoso/antagonistas & inibidores , Bases de Schiff/química , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia
16.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510070

RESUMO

A key role of the mitochondrial Translocator Protein 18 KDa (TSPO) in neuroinflammation has been recently proposed. However, little is known about TSPO-activated pathways underlying the modulation of reactive microglia. In the present work, the TSPO activation was explored in an in vitro human primary microglia model (immortalized C20 cells) under inflammatory stimulus. Two different approaches were used with the aim to (i) pharmacologically amplify or (ii) silence, by the lentiviral short hairpin RNA, the TSPO physiological function. In the TSPO pharmacological stimulation model, the synthetic steroidogenic selective ligand XBD-173 attenuated the activation of microglia. Indeed, it reduces and increases the release of pro-inflammatory and anti-inflammatory cytokines, respectively. Such ligand-induced effects were abolished when C20 cells were treated with the steroidogenesis inhibitor aminoglutethimide. This suggests a role for neurosteroids in modulating the interleukin production. The highly steroidogenic ligand XBD-173 attenuated the neuroinflammatory response more effectively than the poorly steroidogenic ones, which suggests that the observed modulation on the cytokine release may be influenced by the levels of produced neurosteroids. In the TSPO silencing model, the reduction of TSPO caused a more inflamed phenotype with respect to scrambled cells. Similarly, during the inflammatory response, the TSPO silencing increased and reduced the release of pro-inflammatory and anti-inflammatory cytokines, respectively. In conclusion, the obtained results are in favor of a homeostatic role for TSPO in the context of dynamic balance between anti-inflammatory and pro-inflammatory mediators in the human microglia-mediated inflammatory response. Interestingly, our preliminary results propose that the TSPO expression could be stimulated by NF-κB during activation of the inflammatory response.


Assuntos
Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Microglia/efeitos dos fármacos , Purinas/farmacologia , Interferência de RNA , Receptores de GABA/metabolismo , Aminoglutetimida/farmacologia , Anti-Inflamatórios/farmacologia , Inibidores da Aromatase/farmacologia , Sequência de Bases , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citocinas/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo , Fenótipo , Receptores de GABA/genética
17.
Bioorg Med Chem ; 26(22): 5885-5895, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30415894

RESUMO

The expression levels and the subcellular localization of adenosine receptors (ARs) are affected in several pathological conditions as a consequence of changes in adenosine release and metabolism. In this respect, labelled probes able to monitor the AR expression could be a useful tool to investigate different pathological conditions. Herein, novel ligands for ARs, bearing the fluorescent 7-nitrobenzofurazan (NBD) group linked to the N1 (1,2) or N10 (3,4) nitrogen of a triazinobenzimidazole scaffold, were synthesized. The compounds were biologically evaluated as fluorescent probes for labelling A1 and A2B AR subtypes in bone marrow-derived mesenchymal stem cells (BM-MSCs) that express both receptor subtypes. The binding affinity of the synthetized compounds towards the different AR subtypes was determined. The probe 3 revealed a higher affinity to A1 and A2B ARs, showing interesting spectroscopic properties, and it was selected as the most suitable candidate to label both AR subtypes in undifferentiated MSCs. Fluorescence confocal microscopy showed that compound 3 significantly labelled ARs on cell membranes and the fluorescence signal was decreased by the cell pre-incubation with the A1 AR and A2B AR selective agonists, R-PIA and BAY 60-6583, respectively, thus confirming the specificity of the obtained signal. In conclusion, compound 3 could represent a useful tool to investigate the expression pattern of both A1 and A2B ARs in different pathological and physiological processes. Furthermore, these results provide an important basis for the design of new and more selective derivatives able to monitor the expression and localization of each different ARs in several tissues and living cells.


Assuntos
Benzimidazóis/farmacologia , Corantes Fluorescentes/farmacologia , Receptor A1 de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Triazinas/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/química , Células Cultivadas , Relação Dose-Resposta a Droga , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Microscopia Confocal , Estrutura Molecular , Receptor A1 de Adenosina/química , Receptor A2B de Adenosina/química , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química
18.
Bioorg Med Chem ; 24(4): 921-7, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26796953

RESUMO

Three series of polycyclic compounds possessing either primary sulfonamide or carboxylic acid moieties as zinc-binding groups were investigated as inhibitors of four physiologically relevant CA isoforms, the cytosolic hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides reported here showed excellent inhibitory effects against isoforms hCA II, IX and XII, but no highly isoform-selective inhibition profiles. On the other hand, the carboxylates selectively inhibited hCA IX (KIs ranging between 40.8 and 92.7nM) without inhibiting significantly the other isoforms. Sulfonamides/carboxylates incorporating polycyclic ring systems such as benzothiopyranopyrimidine, pyridothiopyranopyrimidine or dihydrobenzothiopyrano[4,3-c]pyrazole may be considered as interesting candidates for exploring the design of isoform-selective CAIs with various pharmacologic applications.


Assuntos
Anidrase Carbônica I/química , Inibidores da Anidrase Carbônica/síntese química , Ácidos Carboxílicos/química , Pirazóis/química , Pirimidinas/química , Sulfonamidas/síntese química , Inibidores da Anidrase Carbônica/química , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Cinética , Ligação Proteica , Relação Estrutura-Atividade , Sulfonamidas/química
19.
Chirality ; 28(5): 434-40, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27095007

RESUMO

The chiral separation of enantiomeric couples of three potential A3 adenosine receptor antagonists: (R/S)-N-(6-(1-phenylethoxy)-2-(propylthio)pyrimidin-4-yl)acetamide (), (R/S)-N-(2-(1-phenylethylthio)-6-propoxypyrimidin-4-yl)acetamide (), and (R/S)-N-(2-(benzylthio)-6-sec-butoxypyrimidin-4-yl)acetamide () was achieved by high-performance liquid chromatography (HPLC). Three types of chiroptical spectroscopies, namely, optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD), were applied to enantiomeric compounds. Through comparison with Density Functional Theory (DFT) calculations, encompassing extensive conformational analysis, full assignment of the absolute configuration (AC) for the three sets of compounds was obtained. Chirality 28:434-440, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Antagonistas do Receptor A3 de Adenosina/química , Cromatografia Líquida de Alta Pressão/métodos , Dicroísmo Circular , Modelos Moleculares , Estrutura Molecular , Dispersão Óptica Rotatória , Pirimidinas/química , Estereoisomerismo
20.
Int J Mol Sci ; 17(7)2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27367681

RESUMO

The steroidogenic 18 kDa translocator protein (TSPO) is an emerging, attractive therapeutic tool for several pathological conditions of the nervous system. Here, 13 high affinity TSPO ligands belonging to our previously described N,N-dialkyl-2-phenylindol-3-ylglyoxylamide (PIGA) class were evaluated for their potential ability to affect the cellular Oxidative Metabolism Activity/Proliferation index, which is used as a measure of astrocyte well-being. The most active PIGA ligands were also assessed for steroidogenic activity in terms of pregnenolone production, and the values were related to the metabolic index in rat and human models. The results showed a positive correlation between the increase in the Oxidative Metabolism Activity/Proliferation index and the pharmacologically induced stimulation of steroidogenesis. The specific involvement of steroid molecules in mediating the metabolic effects of the PIGA ligands was demonstrated using aminoglutethimide, a specific inhibitor of the first step of steroid biosynthesis. The most promising steroidogenic PIGA ligands were the 2-naphthyl derivatives that showed a long residence time to the target, in agreement with our previous data. In conclusion, TSPO ligand-induced neurosteroidogenesis was involved in astrocyte well-being.


Assuntos
Astrócitos/citologia , Indóis/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Neurogênese/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Pregnenolona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA