Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bull Math Biol ; 83(12): 123, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34751832

RESUMO

Physiologically-based pharmacokinetic (PBPK) modeling is a popular drug development tool that integrates physiology, drug physicochemical properties, preclinical data, and clinical information to predict drug systemic disposition. Since PBPK models seek to capture complex physiology, parameter uncertainty and variability is a prevailing challenge: there are often more compartments (e.g., organs, each with drug flux and retention mechanisms, and associated model parameters) than can be simultaneously measured. To improve the fidelity of PBPK modeling, one approach is to search and optimize within the high-dimensional model parameter space, based on experimental time-series measurements of drug distributions. Here, we employ Latin Hypercube Sampling (LHS) on a PBPK model of PEG-liposomes (PL) that tracks biodistribution in an 8-compartment mouse circulatory system, in the presence (APA+) or absence (naïve) of anti-PEG antibodies (APA). Near-continuous experimental measurements of PL concentration during the first hour post-injection from the liver, spleen, kidney, muscle, lung, and blood plasma, based on PET/CT imaging in live mice, are used as truth sets with LHS to infer optimal parameter ranges for the full PBPK model. The data and model quantify that PL retention in the liver is the primary differentiator of biodistribution patterns in naïve versus APA+ mice, and spleen the secondary differentiator. Retention of PEGylated nanomedicines is substantially amplified in APA+ mice, likely due to PL-bound APA engaging specific receptors in the liver and spleen that bind antibody Fc domains. Our work illustrates how applying LHS to PBPK models can further mechanistic understanding of the biodistribution and antibody-mediated clearance of specific drugs.


Assuntos
Portadores de Fármacos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Conceitos Matemáticos , Camundongos , Modelos Biológicos , Polietilenoglicóis/farmacocinética , Distribuição Tecidual
2.
Front Cardiovasc Med ; 9: 840305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498025

RESUMO

Lymphatic vessels serve as a major conduit for the transport of interstitial fluid, immune cells, lipids and drugs. Therefore, increased knowledge about their development and function is relevant to clinical issues ranging from chronic inflammation and edema, to cancer metastasis to targeted drug delivery. Murray's Law is a widely-applied branching rule upheld in diverse circulatory systems including leaf venation, sponge canals, and various human organs for optimal fluid transport. Considering the unique and diverse functions of lymphatic fluid transport, we specifically address the branching of developing lymphatic capillaries, and the flow of lymph through these vessels. Using an empirically-generated dataset from wild type and genetic lymphatic insufficiency mouse models we confirmed that branching blood capillaries consistently follow Murray's Law. However surprisingly, we found that the optimization law for lymphatic vessels follows a different pattern, namely a Murray's Law exponent of ~1.45. In this case, the daughter vessels are smaller relative to the parent than would be predicted by the hypothesized radius-cubed law for impermeable vessels. By implementing a computational fluid dynamics model, we further examined the extent to which the assumptions of Murray's Law were violated. We found that the flow profiles were predominantly parabolic and reasonably followed the assumptions of Murray's Law. These data suggest an alternate hypothesis for optimization of the branching structure of the lymphatic system, which may have bearing on the unique physiological functions of lymphatics compared to the blood vascular system. Thus, it may be the case that the lymphatic branching structure is optimized to enhance lymph mixing, particle exchange, or immune cell transport, which are particularly germane to the use of lymphatics as drug delivery routes.

3.
J Control Release ; 343: 518-527, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35066099

RESUMO

PEGylation is routinely used to extend the systemic circulation of various protein therapeutics and nanomedicines. Nonetheless, mounting evidence is emerging that individuals exposed to select PEGylated therapeutics can develop antibodies specific to PEG, i.e., anti-PEG antibodies (APA). In turn, APA increase both the risk of hypersensitivity to the drug as well as potential loss of efficacy due to accelerated blood clearance of the drug. Despite the broad implications of APA, the timescales and systemic specificity by which APA can alter the pharmacokinetics and biodistribution of PEGylated drugs remain not well understood. Here, we developed a physiologically based pharmacokinetic (PBPK) model designed to resolve APA's impact on both early- and late-phase pharmacokinetics and biodistribution of intravenously administered PEGylated drugs. Our model accurately recapitulates PK and biodistribution data obtained from PET/CT imaging of radiolabeled PEG-liposomes and PEG-uricase in mice with and without APA, as well as serum levels of PEG-uricase in humans. Our work provides another illustration of the power of high-resolution PBPK models for understanding the pharmacokinetic impacts of anti-drug antibodies and the dynamics with which antibodies can mediate clearance of foreign species.


Assuntos
Lipossomos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Anticorpos , Cinética , Camundongos , Polietilenoglicóis/farmacocinética , Distribuição Tecidual
4.
J Control Release ; 338: 804-812, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481925

RESUMO

Pegloticase is an enzyme used to reduce serum uric acid levels in patients with chronic, treatment-refractory gout. Clinically, about 40% of patients develop high titers of anti-PEG antibodies (APA) after initial treatment, which in turn quickly eliminate subsequent doses of pegloticase from the systemic circulation and render the treatment ineffective. We previously found that pre-infusion with high MW free PEG (40 kDa) can serve as a decoy to saturate circulating APA, preventing binding to a subsequently administered dose of PEG-liposomes and restoring their prolonged circulation in mice, without any detectible toxicity. Here, we investigated the use of 40 kDa free PEG to restore the circulation of radio-labeled pegloticase in mice using longitudinal Positron Emission Tomography (PET) imaging over 4 days. Mice injected with pegloticase developed appreciable APA titers by Day 9, which further increased through Day 14. Compared to naïve mice, mice with pegloticase-induced APA rapidly cleared 89Zr-labeled pegloticase, with ~75% lower pegloticase concentrations in the circulation at four hours after treatment. The 96-h AUC in APA+ mice was less than 30% of the AUC in naïve mice. In contrast, pre-infusion of free PEG into PEG-sensitized mice restored the AUC of pegloticase to ~80% of that seen in naïve mice, resulting in a similar biodistribution to pegloticase in naïve mice over time. These results suggest that pre-infusion of free PEG may be a promising strategy to enable the safe and efficacious use of pegloticase and other PEGylated drugs in patients that have previously failed therapy due to induced APA.


Assuntos
Gota , Animais , Humanos , Camundongos , Polietilenoglicóis , Distribuição Tecidual , Urato Oxidase , Ácido Úrico
5.
Bioinspir Biomim ; 16(1)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32746437

RESUMO

Numerous fluid-structure interaction problems in biology have been investigated using the immersed boundary method. The advantage of this method is that complex geometries, e.g., internal or external morphology, can easily be handled without the need to generate matching grids for both the fluid and the structure. Consequently, the difficulty of modeling the structure lies often in discretizing the boundary of the complex geometry (morphology). Both commercial and open source mesh generators for finite element methods have long been established; however, the traditional immersed boundary method is based on a finite difference discretization of the structure. Here we present a software library for obtaining finite difference discretizations of boundaries for direct use in the 2D immersed boundary method. This library provides tools for extracting such boundaries as discrete mesh points from digital images. We give several examples of how the method can be applied that include passing flow through the veins of insect wings, within lymphatic capillaries, and around starfish using open-source immersed boundary software.


Assuntos
Software , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA