Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 88(11): 4881-4893, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538637

RESUMO

AIMS: Methadone metabolism and clearance are determined principally by polymorphic cytochrome P4502B6 (CYP2B6). Some CYP2B6 allelic variants affect methadone metabolism in vitro and disposition in vivo. We assessed methadone metabolism by CYP2B6 minor variants in vitro. We also assessed the influence of CYP2B6 variants, and P450 oxidoreductase (POR) and CYP2C19 variants, on methadone clearance in surgical patients in vivo. METHODS: CYP2B6 and P450 oxidoreductase variants were coexpressed with cytochrome b5 . The metabolism of methadone racemate and enantiomers was measured at therapeutic concentrations and intrinsic clearances were determined. Adolescents receiving methadone for surgery were genotyped for CYP2B6, CYP2C19 and POR, and methadone clearance and metabolite formation clearance were determined. RESULTS: In vitro, CYP2B6.4 was more active than wild-type CYP2B6.1. CYPs 2B6.5, 2B6.6, 2B6.7, 2B6.9, 2B6.17, 2B6.19 and 2B6.26 were less active. CYPs 2B6.16 and 2B6.18 were inactive. CYP2B6.1 expressed with POR variants POR.28, POR.5 and P228L had lower rates of methadone metabolism than wild-type reductase. In vivo, methadone clinical clearance decreased linearly with the number of CYP2B6 slow metabolizer alleles, but was not different in CYP2C19 slow or rapid metabolizer phenotypes, or in carriers of the POR*28 allele. CONCLUSIONS: Several CYP2B6 and POR variants were slow metabolizers of methadone in vitro. Polymorphisms in CYP2B6, but not CYP2C19 or P450 reductase, affected methadone clearance in vivo. CYP2B6 polymorphisms 516G>T and 983T>C code for canonical loss of function variants and should be assessed when considering genetic influences on clinical methadone disposition. These complementary translational in vitro and in vivo results inform on pharmacogenetic variability affecting methadone disposition in patients.


Assuntos
Metadona , Farmacogenética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b
2.
Br J Clin Pharmacol ; 87(2): 516-526, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32495990

RESUMO

AIMS: Changes in serotonergic sensory modulation associated with overexpression of 5-HT3 receptors in the central nervous system (CNS) have been implicated in the pathophysiology of neuropathic pain after peripheral nerve damage. 5-HT3 receptor antagonists such as ondansetron can potentially alleviate neuropathic pain, but have limited effectiveness, due potentially to limited CNS access. However, there is currently limited information on CNS disposition of systemically-administered 5-HT3 receptor antagonists. This study evaluated the cerebrospinal fluid (CSF) disposition of ondansetron, as a surrogate of CNS penetration. METHODS: Fifteen patients were given a single 16 mg intravenous 15 minute infusion of ondansetron, followed by serial blood and a single CSF sampling. Population pharmacokinetic (PK) modelling was implemented to describe the average and individual plasma and CSF profiles of ondansetron. A two-compartmental model was used to capture ondansetron plasma PK with a single CSF compartment to describe distribution to the CNS. RESULTS: The individual model-estimated CSF to plasma partition coefficients of ondansetron were between 0.09 and 0.20. These values were mirrored in the calculated CSF penetration ratios, ranging from 0.08 to 0.26. CONCLUSIONS: After intravenous administration, CSF concentrations of ondansetron were approximately 7-fold lower than those observed in the plasma. A model could be developed to describe individual CSF concentration-time profiles of ondansetron based on a single CSF data point. The low CSF penetration of ondansetron may explain its limited analgesic effectiveness, and affords an opportunity to explore enhancing its CNS penetration for targeting conditions such as neuropathic pain.


Assuntos
Neuralgia , Ondansetron , Administração Intravenosa , Humanos , Infusões Intravenosas , Neuralgia/tratamento farmacológico , Plasma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA