RESUMO
In this study we show a reproduction of the Zhadin experiment, which consists of the transient increase of the electrolytic current flow across an aqueous solution of L-arginine and L-glutamic acid induced by a proper low frequency alternating magnetic field superimposed to a static magnetic field of higher strength. We have identified the mechanisms that were at the origin of the so-far poor reproducibility of the above effect: the state of polarization of the electrode turned out to be a key parameter. The electrochemical investigation of the system shows that the observed phenomenon involves the transitory activation of the anode due to ion cyclotron frequency effect, followed again by anode passivation due to the adsorption of amino acid and its oxidation products. The likely occurrence of similar ion cyclotron resonance (ICR) phenomena at biological membranes, the implications on ion circulation in living matter, and the consequent biological impact of environmental magnetic fields are eventually discussed.
Assuntos
Arginina/química , Campos Eletromagnéticos , Ácido Glutâmico/química , Adsorção , Membrana Celular/fisiologia , Ciclotrons , Condutividade Elétrica , Eletrólitos , Íons/química , Espectroscopia de Ressonância Magnética , Modelos BiológicosRESUMO
A recent experiment on a physical, nonbiological system of ions at room temperature has proved that microscopic ion currents can be induced by applying simultaneously two parallel magnetic fields, one rather weak static field, (-->)B(0) and one much weaker alternating field, (-->) B(ac),[B(ac) approximately 10(-3) B(0)] whose frequency coincides with the cyclotron frequency v = qB(0)/2pim of the selected ion. As a result, ionic bursts lasting up to 20 s and with amplitude up to 10 nA arise. The much larger exchanges of energy induced by thermal agitation (the "kT-problem") appear to play no role whatsoever. We have analyzed this problem in the framework of coherent quantum electrodynamics, reaching the following conclusions: (a) as has been shown in previous articles, water molecules in the liquid and solute ions are involved in their ground state in coherent ordered configurations; (b) ions are able to move without collisions among themselves in the interstices between water coherence domains; (c) because of coherence, ions can follow classical orbits in the magnetic fields. A full quantitative understanding of the experiments is thus reached.